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Abstract
What is the mechanism behind people’s remarkable ability
to learn from very little data, and what are its limits? Pre-
liminary evidence suggests people can infer categories from
extremely sparse data, even when they have fewer labeled
examples than categories. However, the mechanisms behind
this learning process are unclear. In our experiment, people
learned 8 categories defined over a 2D manifold from just 4
labeled examples. Our results suggest that people are form-
ing rich representations of the underlying categories despite
this limited information. These results push the limits of how
little information people need to build strong and systematic
category representations.

Introduction
Categorization is a basic problem faced by any organism that
hopes to capture the abstract structure underlying perceptual
experience and is a classic topic of research in cognitive psy-
chology (e.g., Bruner and Austin 1956; Medin and Schaffer
1978; Nosofsky 1986). Humans can learn categories from
limited data, inferring novel concepts from just a few ex-
amples (e.g., Xu and Tenenbaum 2007). In recent work, we
showed people can infer categories even if given fewer ex-
amples (M ) than the number of categories (N ) (Malaviya
et al. 2022). Although there is theoretical evidence that ma-
chines can categorize in this few-shot regime (Sucholutsky
and Schonlau 2021), more work is needed to see how we
can generalize this data-efficient classification to more com-
plex domains. Our previous human experiments only con-
sidered scenarios where categories formed intervals along a
1D manifold, and participants were given M = N − 1 la-
beled examples. So, it is unclear whether people are actually
learning sophisticated representations of high-dimensional
feature spaces in order to infer the space of the M th class.
In this paper, we probe the limits of the human ability to
form category representations with sparse data by generat-
ing stimuli on a 2D manifold and showing M = 4 exam-
ples while soliciting categorization judgments for N = 8
categories. Our results provide evidence that people can in-
deed represent more categories than the number of examples
they are shown. Furthermore, people’s judgments are simi-
lar to predictions from a weighted nearest-neighbor model,
providing a way to understand how people, and perhaps ma-
chines, form generalizations from very sparse data.

Figure 1: 9 of the 400 stimuli along the 2D manifold, 4 of
which are the soft-labeled examples. The stimulus at (0,19)
is annotated with the question participants saw for each trial.

Figure 2: Left: Participant classification majority vote for
each stimulus in the 20×20 grid. Right: Simulated clas-
sification majority vote using a weighted nearest neighbor
model.

Methods
Stimuli The stimuli were images of stick figures represent-
ing quadrupeds, adapted from Malaviya et al. 2022; San-
born and Griffiths 2008. They have 9 distinct, continuous
features, so they are points in 9D feature space. The stim-
uli were generated by selecting feature values for three stick
figures (X,Y, Z), then taking linear combinations of these



Figure 3: Left: Participant classifications of stimuli along a 2D manifold into 8 classes based on 4 soft-labeled examples. Each
outer scatter plot corresponds to points that were assigned to each respective class, with the black ‘X’ marking the class centroid.
The inner scatter plot has a colored ‘X’ corresponding to each class centroid, and pie charts denoting the soft-labeled examples
at their locations on the manifold. Right: Simulated classifications using an exponential distance-weighted 4-nearest neighbor
model.

feature values to produce more stick figures. Each figure
can be represented as D = i(X − Y ) + j(X − Z) where
i, j ∈ {1 + n ∗ 0.1}10n=0 are scaling factors and X,Y, Z are
vectors containing the manually selected feature values. This
yields 400 stimuli organized in a 20×20 grid, sampling a 2D
manifold in a 9D feature space.

Four of the stimuli were labeled (or “soft-labeled”) with
probabilities of belonging to eight different classes, enumer-
ated A-H, e.g., one stick figure in Figure 1 at location (10,0)
on the grid was labeled 40% A, 30% B, 30% H, and 0%
C-G.
Experimental Procedure The four labeled stimuli were
shown to participants (n = 41, from Prolific), who were told
they represented models that paleontologists use to summa-
rize dinosaur fossil structures. Soft labels were referred to as
”genetic information” that described the labeled dinosaurs’
relation to different ”species” A-H (classes). Each partici-
pant was asked to categorize 100 new stimuli into the most
likely class. The underlying dimensions used to construct
the stimuli were not explicitly revealed to participants.

Results
Figure 2 (left) shows the majority species vote for each stim-
ulus. We see four classes dominate, likely because they were
the four for which a stimulus was labeled as being 40% sim-
ilar (in contrast to the others which only had 30%). How-
ever, some minority classes appear in the boundaries be-
tween these classes, indicating that people may form some
consensus regarding where these classes lie on the manifold.
Figure 3 (left) shows the empirical distribution of classifi-

cations for each category, and see that participants are also
categorizing into the minority classes. Furthermore, people
systematically disentangle the manifold into the 8 classes,
and the centroid of each is located near the examples whose
soft labels contain non-zero values for that category.

Figures 2 (right) and 3 (right) show classification results
from a 4-nearest neighbor model with exponential inverse-
distance weighting (i.e., an exemplar model consistent with
the universal law of generalization; Shepard 1987). Partic-
ipant behavior has some similarity to the model, but there
still appear to be systematic differences. For instance, why
do some minority categories span less of the manifold than
predicted? Participants may show a bias towards majority
classes, even if they are making additional inferences about
minority classes, because we only ask for the most likely
class, rather than a distribution over classes.

Conclusion
Our findings contribute to the growing discussion regard-
ing limits of data-efficiency in the fields of artificial intel-
ligence and cognitive science. People can learn from more
sparse data than previously thought possible; we present ev-
idence of systematic judgments, even when categorizing into
8 classes from just 4 soft-labeled stimuli. Models that cap-
ture human judgments can guide directions for few-shot ma-
chine classification. Though this abstract highlights similari-
ties to exponentially-weighted generalization algorithms, fu-
ture work could probe the mechanisms of these judgments
by comparing them to predictions from additional models.
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