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Introduction
Generative models have achieved much success through of-
fline batch training of billions of parameters using huge
quantities of data. Humans, on the other hand, learn exper-
tise piecemeal and rapidly in an incremental process guided
by prior experience. Here we propose a theory and a research
plan to build a computational model of human-like acquisi-
tion of language and related concepts.

Human language acquisition is a lifelong process of
adding increments of knowledge (Tomasello 2003). We ap-
proximate this process with three stages: a pre-verbal stage
of concept learning (Mandler and Pagán-Cánovas 2014), an
early language stage of attaching language to those con-
cepts (Spinelli, Fasolo, and Mesman 2017), and an advanced
language stage where language can drive concept learning
(Lakoff and Johnson 1980). In humans acquisition and real-
time use of both language and concepts are tightly integrated
in all these stages.

The proposed research program is based on a theory of
human-like incremental and efficient acquisition of language
and related concepts in the stages mentioned. We plan to
build a computational model of this theory based on our
prior research on cognitive architectures (Laird, Lebiere,
and Rosenbloom 2017), interactive task learning (ITL; Laird
et al. 2017), and human-like language comprehension (Lin-
des 2022). This model will be part of an autonomous ITL
agent embodied in a simulated robotic agent that learns con-
cepts and language incrementally over an extended period
of time. We plan to evaluate both the theory and the model
through experiments using a large published benchmark.

A Computational Model
Many researchers have built computational models of lan-
guage processing (Winograd 1972; Lewis 1993; Ball 2011),
language acquisition (Anderson 1974), or learning specific
language features (Nishikawa and Morita 2020). None of
this work describes acquisition of language and concepts
sufficient to teach new tasks to a robot.

Our research group has over several years developed an
ITL agent called Rosie (Mininger 2021; Kirk 2019) using
the Soar cognitive architecture (Laird 2012). As part of this
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work Lindes (2022) has built a human-like language com-
prehension system called Lucia, and Jones (2022) has ex-
plored a model of event cognition. In the research proposed
here we intend to extend this computational model to enable
it to acquire new language and concepts from its experience.

Since human acquisition and use are tightly integrated, a
human-like computational model of acquisition requires a
human-like model of real-time processing. Our research on
acquisition is based on the Lucia model of comprehension,
which is human-like in several respects. Comprehension is
an integral part of intelligent behavior by an autonomous
agent. Knowledge of language is made up of many small
composable units of form-meaning mapping that can be
composed in an unlimited number of ways, using a formal-
ism called Embodied Construction Grammar (ECG; Bergen
and Chang 2013). Processing is done incrementally in sim-
ulated real time with immediate interpretation. Processing
is done using the general cognitive mechanisms of the Soar
model of human-like cognition (Newell 1990). The units of
knowledge of language were acquired in small increments
from individual experiences, by a human engineer. The fo-
cus of this research is to replace the human engineer with a
human-like computational model of language acquisition.

Incremental acquisition begins with what we will call ac-
quisition events. Each of these events is an experience where
some element of knowledge is missing to be able to fully
understand a language input or a new concept. The agent
uses reasoning based on situational awareness to propose a
new knowledge element that would fill the gap, then acts
on that proposal. As with humans, later input may require
the proposal to be modified or abandoned, or it may confirm
it (Trueswell et al. 2013). This fits closely with Krashen’s
(1985) input hypothesis and Tomasello’s (2003) account of
human acquisition.

As more experiences with the same elements happen, the
proposal is gradually generalized into declarative knowl-
edge (Goldberg 2019). As these elements are used over and
over, this declarative knowledge is automated as procedural
knowledge. Once this automization has been accomplished,
this particular element of language and its associated mean-
ing can be processed very rapidly, as humans do.

We intend to implement this process in an advanced ver-
sion of our ITL agent, and experiment with training it in a
way similar to the three developmental stages described.



Evaluation Using a Published Benchmark

We plan to use tasks and training data from the ALFRED
benchmark (Shridhar et al. 2019) to provide a series of
learning experiences in a developmental trajectory with the
three stages mentioned above. ALFRED has 8,055 “expert
demonstrations,” each of which has a plan generated au-
tomatically to drive a simulated robot to perform a task
in an AI2-THOR (Kolve et al. 2022) simulation, images
of the robot successfully performing the task by following
that plan, and three “annotations” written by three different
Amazon Mechanical Turk (AMT) workers describing a goal
and how to perform the task.

In the pre-verbal stage, our agent will learn concepts of
objects and actions from observing and attempting to imitate
the operation of the demonstration agent, corresponding to
the things infants learn about objects in the world and how
to manipulate them during the first year of life (Mandler and
Pagán Cánovas, 2014). No language will be involved in this
stage. As the demonstrator performs each action, our agent
will model the action in the form of an event schema, use this
to create an action model for that action, and later test this
new knowledge by trying to imitate the whole task. Much
of this corresponds to work done by Jones (2022) on event
cognition in Soar. At the same time the agent will be learning
concepts for classes of objects it sees in the demonstrations.

In the early language stage, somewhat like children learn-
ing from “motherese” (Spinelli, Fasolo, and Mesman 2017;
Kuhl 2000), the agent will learn simple language. We will
convert the task plans from ALFRED into simple language
similar to that used by Rosie, where each plan’s language
has a goal statement and a series of short sentences describ-
ing the steps required to perform the task. The agent will
observe demonstrations, learning lexical and syntactic con-
structions and their grounding to the perceived environment
incrementally from each individual acquisition event. Using
the knowledge learned, the agent will be able to respond
quickly to test scenarios never seen before and perform the
described tasks with only the language input to guide it.

The advanced language stage involves learning to use the
broader range of language in the task descriptions produced
by the human AMT workers. The agent will reason about
how to match each demonstration to the language provided.
The agent will seek the knowledge it needs from several
possible sources: using its own internal search mechanisms,
asking questions of a human using previously-developed
ITL techniques (Mininger 2021; Kirk 2019), and consulting
a large language model (LLM) as we have done in previ-
ous experiments (Kirk, Wray, and Lindes 2023). We plan to
explore the trade-offs and ways to combine these different
knowledge sources as in previous work (Kirk et al. 2023).

Based on past experience with similar models, we expect
that we can build this agent and design its experiments to
show that while learning from only a small subset of the
demonstrations provided in the benchmark the agent has
much better success in executing test tasks based on learned
knowledge when compared to systems based on training
large neural networks on the whole benchmark data set.

Potential Broader Impact
If this effort succeeds, it will both shed additional light on
the Cognitive Science of how human language acquisition
works, and show much greater learning efficiency as com-
pared to deep-learning approaches using the same ALFRED
benchmark.

The proposed research program has many limitations. The
implementation is in a simulated environment rather than a
full physical embodiment, the scope of language involved
is only a small part of full human language ability, and it
includes no attempt to compare results to actual human data.

Nevertheless, motivating this approach with ideas from
Cognitive Science and computationally implementating our
theory will provide opportunities for extending our model’s
performance and comparing it to real human data. Success
in achieving substantially better task performance based on
much less training data than needed by a deep learning ap-
proach will provide a powerful argument to the AI commu-
nity that human-like learning approaches can make substan-
tial contributions toward building artificial embodied agents
that can collaborate with humans while constantly increas-
ing their knowledge of how to communicate with a human
partner and how to perform tasks in the world.

Furthermore, this proposed project incorporates substan-
tial overlap between AI and Cognitive Science, which can
help increase collaboration between these two historically
connected fields.
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