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Abstract

The challenge of developing Multi-Agent reinforcement
learning (MARL) algorithms which can leverage very lim-
ited amounts of experience to coordinate with new team-
mates is a part of the more general problem of nonstationarity
due to the dependence of environment dynamics’ on agent’s
emerging policies. Recent works have focused on generat-
ing diverse training partners and using either a large single
model which can adapt to all training partners, or a mix-
ture of experts to choose from pretrained policies based on
the observed actions of other agents. We propose a modular
solution that can be added on to existing agents to learn a
command hierarchy within a single episode so that a group
of agents may approach the competency of the best agent
in the group. We view learning to communicate as a set of
non-stationary multi-armed bandit (MAB) problems where
each agent has dedicated incoming and outgoing command
MAB samplers that adjusts their policies. When giving com-
mands, each agent’s goal is to choose the subject which is
most likely to follow their command. When receiving com-
mands, each agent uses it’s own estimate of advantage after
having followed a command to decide whether to listen to
this commander again in the future. We show that competent
agents are able to quickly adapt to incompetent teammates by
instructing while ignoring them whereas incompetent agents
learn to defer to more skilled teammates. If pretrained agents
are capable of sending or receiving commands before adding
our communication structure, the agent’s desired actions may
be used as a prior distribution which will influence the MAB
samplers to mitigate early exploration regret.

Introduction

Traditionally, MARL algorithms use centralized training /
parameter sharing (Lowe et al. 2017; Terry et al. 2020), low
learning rates, learned gradient-based communication (Zhu,
Dastani, and Wang 2022), or a diverse set of training part-
ners to address the problem of non-stationary environment
dynamics (Terry et al. 2020) Training with diverse partners
has shown success in few shot scenarios through opponent
modeling (Albrecht and Stone 2018), and other play (Hu
et al. 2020). Our approach serves as an augmentation to
MARL algorithms like the ones above, or a replacement to
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them if diverse training partners are not feasible. Our algo-
rithm grants agents the ability to adapt to novel policies us-
ing a human-like mental model of command-based commu-
nication. It uses the past experiences of trained models as
a Bayesian prior combined with limited recent experience
with specific teammates to create a model which is capa-
ble of quickly adapting to new individual teammates without
risking policy collapse by quickly retraining large models.
We propose a communication structure between agents
comprising of incoming and outgoing commands. Both in-
coming and outgoing command selections are treated as
non-stationary multi-armed bandit problems (Kuleshov and
Precup 2014). From the perspective of some agent a; € A
where A is the set of agents in the environment, an outgoing
command is a suggested action given by a; to some other
agent a; € A. An incoming command to a; is a suggested
action from agent a; to agent a;. Selection of outgoing com-
mands are modeled as a multi-armed bandit problem where
the reward for instructing a; € A s 1 if a; follows the com-
mand, and O if it does not. Note that an agent may instruct
itself, if « = j. This allows an agent to command itself in
the case that the other agents stop listening. This behavior
is desirable if a; is sending poor instructions. The outgoing
MAB problem is necessarily non-stationary because team-
mates may change their probability of listening over time.
The reward for incoming commands is based on the agent’s
estimation of advantage after following a command. While
listening, agent’s must estimate either a value function V' (s)
or Q function (s, a) or a way to query whether they think
the command helped. Advantage, A, is calculated as either 1
or 2. Here, s; refers to the state at time ¢ and a; refers to the
action taken at time ¢. The discount factor -y accounts for un-
certainty about future rewards, and 7, is the reward received
at time ¢.
A=ri+9V(st41) — V(st) (1)

A =1 +7Q(st41,a41) — Q(s¢, ar) 2
If an agent chooses to follow a command, the advantage will
serve as an estimate of whether the command was better or
worse than the agent expected to do on it’s own. Agents will
learn to listen to instructions coming from agents resulting
in a positive advantage and they will learn to instruct agent’s
which follow them most often. A natural “command” hierar-
chy can emerge where agents listen to more competent team-
mates and instruct less competent ones.



L\S P1 P2 P3 P4
P1 0.97,4% 79, 66 % 201,90% | 262,97%
P2 39,5% | 0.26,0.1% | -18,-5% 6.4,1%
P3 | 106, 64% 12, 3% 7.1,1% 1.2,0.2%
P4 | 115,60% | -16,-3% | -1.6,-0.3% | -4.6,-1%

Table 1: Each cell represents both the absolute and percent
difference when the agents used our algorithm to listen to
another agent compared to listening randomly.

MAB Samplers and prior information

We used three families of MAB samplers to solve the incom-
ing and outgoing communication problem where the hyper-
parameters prior strength and experience strength are used
by a sampler to determine how quickly an agent will adjust
from it’s own policy to new information about a teammate.

0y = 0o + woly + wiry 3)

The sampler estimate, ¢, is a linear combination of an
initial value, 6, a desired action generated by the pretrained
agent a, multiplied by the prior strength, wg, and recent re-
wards for communication, r;, multiplied by the experience
strength, w; . The first sampler used is a Thompson Sampler
(Thompson 1936) based on the Dirichlet distribution(Riou
and Honda 2020). For e-greedy and UCB sampling, we used
a constant learning rate to serve the non-stationary nature of
the problem where the reward for pulling a given arm is the
observed advantage. ; represents the set of alphas for the
Dirichlet distribution in Thompson sampling, and the esti-
mated mean rewards for each arm in e-greedy and UCB.

Benchmark Environments
Cart pole Listener

We use the OpenAl Gym cartpole (Brockman et al. 2016)
environment where one agent, the listener, is playing the
game and another agent, the speaker, is giving instructions.
For this experiment, we used four policies with mean scores
of 22, 203, 484, and 498 respectively when playing with no
communication. For each experimental run, we chose one
policy to listen and another to command. We ran the cart
pole problem for 100 episodes where the listener’s prior
experience with it’s speaker is reset before each episode
to measure zero-shot performance. We compared our al-
gorithms performance to an algorithm which chooses ran-
domly to listen to or ignore another agent with a probabil-
ity of 0.5. The mean score of the four policies without no
commands is 301. With random mixing, the score increases
355, and with our learning algorithm it increases to 447.
In table 1 we present the actual and percent differences in
average score between our algorithm and that with random
mixing. For cases where policies are similar, our algorithm
performs comparable to randomly listening, but when agent
skills are different, e.g., with player 1 and 3, our algorithm
significantly improves performance.

MARL Grid world

The second environment used here is an 8x8 grid world with
four agents and consisting of paths and pits. Each agent re-
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Figure 1: Policy rewards over experiments in Grid World.

ceives a small negative reward for moving along a path and
a large positive reward for reaching the exit. Additionally,
agents are given a large negative reward and are forced to
move randomly if they enter a pit. The game ends when all
agents exit. Due to individual rewards, the value function for
an optimal agent in this environment can be solved for using
either policy or value iteration. We used 4 policies varying
in quality from random to optimal: choosing optimal actions
0%, 30%, 80%, and 100% of the time and choosing ran-
domly otherwise. Each agent gives a command to an agent of
it’s choice. If an agent is given multiple commands, it must
choose one. For this experiment, we ran 5,000 trials with no
communication, random communication, and learned com-
munication. The mean reward for the team as a whole was
-9.3 for no communication, -7.7 for random communication,
and -4.3 for learned communication.

Conclusion

The ability to send commands between agents has the po-
tential to enable better coordination and team performance.
Our command based sampling coordination framework al-
lows for agents to learn desirable command protocols within
a single episode of play with the aid of only a value func-
tion estimate. It works either with no prior knowledge, or
as an extension of existing architectures that are capable of
communication with tun-able parameters for how quickly an
agent should adapt its prior beliefs. Our method shows the
greatest team performance increases when the difference in
competence between players is large and our algorithm pro-
tects competent players from listening to commands from
ineffective agents. These initial results reinforce our belief
that our learning to effectively use commands approach may
be widely applicable to MARL environments with zero shot
coordination requirements between teammates.
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