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Abstract
Humans are remarkably adaptive instructors who adjust ad-
vice based on their estimations about a learner’s prior knowl-
edge and current goals. Many topics that people teach, like
goal-directed behaviors, causal systems, categorization, and
time-series patterns, have an underlying commonality: they
map inputs to outputs through an unknown function. This
project builds upon a Gaussian process (GP) regression
model that describes learner behavior as they search the hy-
pothesis space of possible underlying functions to find the
one that best fits their current data. We extend this work by
implementing a teacher model that reasons about a learner’s
GP regression in order to provide specific information that
will help them form an accurate estimation of the function.

Introduction
Learners recognize when they are in a pedagogical scenario
and are able to infer more information as a result, even when
given very little data (Shafto, Goodman, and Griffiths 2014).
Teachers also rely on this situational understanding when
choosing advice, tailoring their choices to assist a learner’s
beliefs and goals (Rafferty et al. 2011; Rafferty, LaMar,
and Griffiths 2015), even from a young age (see natural
pedagogy, Gweon 2021). However, the majority of previ-
ous task paradigms examine pedagogy in small and discrete
domains, like categorization or feature-learning (Bridgers,
Jara-Ettinger, and Gweon 2020; Sumers et al. 2021). Other
work, which models teacher choices in more complex tasks
like algebra teaching (Rafferty et al. 2011), only allow teach-
ers to choose from a small pool of discrete actions. This
project posits an extension to a Gaussian process regression
model that allows examination of pedagogical reasoning in
continuous and open-ended task domains. Function learning
research characterizes how people narrow down the theoret-
ically infinite space of function hypotheses to more inter-
pretable representations. Function learning has been mod-
eled as a Gaussian process regression, and compositional bi-
ases describe human patterns of function hypothesis genera-
tion and learning (Lucas et al. 2015; Schulz et al. 2017). But,
this body of research has not examined the role of pedagogy
in guiding learner hypothesis generation.

Model
We took inspiration from a visual function completion task
in which human participants observed an image with a few

dots placed along a domain (Schulz et al. 2017). Participants
drew a line that represented the function which they believed
had produced those dots. We modeled an artificial learner
agent who generates an estimate of the underlying function
given a set of points, like the aforementioned human partic-
ipants, with a Gaussian process. We also modeled an artifi-
cial teacher agent that generates a useful set of points for a
learner to observe, so they may better learn the function.

Function Learning & Teaching
Function learning can be formalized as a Bayesian inference
problem, in which a learner updates a belief distribution
about a continuous function f conditioned on data points
D ∈ {(x1, y1), . . . , (xn, yn)}.

PL(f |D) ∝ P (D|f)P (f)
In this example, we assume teachers are trying to teach

a target function f∗ and are tasked with giving a set of n
example points D′ = {(x′

1, y
′
1), ..., (x

′
n, y

′
n)} that help the

learner learn the function for some target inputs x∗ ∈ Rm.
The teacher’s utility function is based on how similar the
learner’s inferred function is to the true function at the target
inputs. Given a function f , a target function f∗, and target
inputs x∗, the teacher’s function-wise utility is based on the
mean-squared error (MSE):

UT (f ; f
∗,x∗) = exp (−MSE(f∗(x∗), f(x∗)))

Then, the expected utility for providing the learner with
teaching points D′, given target function f∗ and target inputs
x∗ is:

UT (D
′; f∗,x∗) = EPL(f |D′)[UT (f ; f

∗,x∗)]

Gaussian Processes
A Gaussian process (GP) defines a distribution over func-
tions, parameterized by a mean function µ, which specifies
the expected output function, and kernel function k which
specifies the covariance of outputs. We model learners per-
forming Bayesian updates on a GP as they gather more
data in a process called Gaussian process regression. Let
f : X → R be a function drawn from a GP . We chose
the radial basis kernel function for k, a standard option for
a kernel function that captures a decay in covariance as the
distance between inputs increases.

f ∼ GP(µ, k) k(xi,xj) = exp

(
−∥xi − xj∥2

2σ2

)



Figure 1: We selected examples of target functions (dotted line) and learners’ already-observed points (black dots) to capture
the successes and limits of three teacher strategies. Teacher choices for subsequent points are shown as red dots. The learner’s
resulting GP is represented by a mean function µ (blue line) and the 95% confidence interval (blue shading) given the kernel
function k. The approximated expected utilities E(UT ) in g. quantify the probability that each teaching policy chooses points
that induce the right function f∗(x) = x ∗ sinx given a random known D. Note that by specifying just one f∗ and kernel k for
a demonstrative example, E(UT ) does not necessarily generalize to other functions or reflect human choices.

Simulated Teaching Strategies
A teacher model is specified by how it generates and as-
sesses candidate points to give to the learner. Each of the
considered teacher models knew the underlying f∗ and a set
of points which the learner already observed D. Then, they
generated candidate sets of n points and selected the D′ with
the highest utility UT .

Random Sampling The teacher selects n coordinates uni-
formly at random to build D′. Random point selection can
lead to successful teaching (Figure 1a), but not reliably,
since it could select a redundant point that falls too close
to something the learner already knows (Figure 1d).

Maximizing Spread Over Domain The teacher calcu-
lates the length of the intervals between known xi ∈ D
along the specified domain x∗. They select the interval
[xa, xb] with max |xb − xa|, calculate the xmidpt = a+ b−a
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and add (xmidpt, ymidpt) to D′. This is repeated n times, with
each iteration updating D ← D′. Selecting points that maxi-
mize spread across the domain can prevent redundant points,
but could fail to capture important parts of the function
where there are rapid or patterned changes (e.g., Figure 1e
where periodicity lines up with the spread over target do-
main so only one y value is seen).

Minimizing Uncertainty Over Range The teacher per-
forms approximate inference on the learner’s representation
of the function distribution. After simulating the learner’s
GP , the teacher determines the xu ∈ x∗ with the highest
standard deviation and add its coordinate (xu, yu) to D′. This
is repeated n times, with each iteration updating D ← D′.
Inferring where learners are most uncertain and selecting
those points is a more reliable pedagogical approach, but
could possibly be misleading (e.g., Figure 1f, where local
minima and maxima are not yet known).

Discussion
Gaussian processes can help model how people generate in-
formative teaching examples that support learning with little
data. In future work, we will collect human data for the func-
tion teaching task and perform model fitting and compari-
son to examine which strategies best capture participants’
pedagogical choices. Perhaps a single heuristic is sufficient
to capture human choices, but people could flexibly employ
many heuristics that approximate inference over a learner’s
GP regression. We will also consider further teaching heuris-
tics, like prioritizing local minima and maxima coordinates,
and more model-based teacher strategies which consider the
learner’s compositional priors via the kernel function.
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