
Rapid Acquisition of Hierarchical Plan Knowledge

Pat Langley
Institute for the Study of Learning and Expertise

2164 Staunton Court, Palo Alto, CA 94306
http://www.isle.org/∼langley/

Advances in machine learning often result from innova-
tions in knowledge representation. Here we review recent
work on hierarchical problem networks or HPNs, which en-
code knowledge about how to decompose planning tasks
into subproblems and use this content to solve new tasks.
We also report HPNL, an implemented system that acquires
such expertise in an incremental, piecemeal, and rapid man-
ner from sample solutions, along with experimental studies
of its learning behavior.

In this framework, procedural knowledge comprises a set
of conditional methods that decompose problems – sets of
goals – into simpler subproblems. In particular, each HPN
method includes:

• A head that describes a goal the method aims to achieve;
• An operator O that accomplishes this goal when applied;
• A subproblem containing goals based on O’s conditions;
• State conditions for when to use the decomposition; and
• Unless conditions of goals that must not be unsatisfied.
For a method to be relevant, all of its state conditions must
be satisfied in the current situation but none of its unless
conditions may be satisfied. The former are used mainly to
select among possible decompositions; the latter are used
primarily to order them in ways that avoid goal interactions.

Problem solving with HPNs involves search through a
space of hierarchical plans that achieve top-level goals from
an initial state. The key difference from HTN planning is
that HPNs rely on a stack of problems rather than tasks or
individual goals, which supports checking of unless con-
ditions that avoid goal interactions. Backtracking can arise
when the HPN’s methods have overly general state condi-
tions or when they lack necessary unless conditions. How-
ever, given appropriate knowledge about a domain, an HPN
planner mimics a deterministic procedure in selecting a use-
ful decomposition at each step. Langley and Shrobe (2021)
have reported HPD, a hierarchical problem solver that im-
plements this approach to knowledge-guided planning.

We have also developed HPNL (Langley, 2023), a system
that acquires new HPN methods from a sequence of sample
solutions, each having the form of a hierarchical plan that
solves a given problem. Learning involves four processes:

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Identifying HPN structure. For each subplan that achieves
a goal G by applying an operator O, HPNL produces a
new method with G as its head, O as its operator, and O’s
conditions as its subproblem. Unlike schemes for learn-
ing HTNs, there is no need to decide when two methods
should have the same head, as this is determined by the
goal that each one achieves.

• Inferring dynamic state conditions. The main purpose of
state conditions is to ensure all arguments in a method’s
operator are bound. To find state conditions for a method
M with operator O, for each argument of O not bound in
M’s head, HPNL finds relations that held when the sam-
ple decomposition occurred but that are inconsistent with
O’s conditions. Inconsistency is based on domain con-
straints extracted from operator definitions.

• Finding static state conditions. If some operator argu-
ments still remain unbound, HPNL adds conditions based
on static relations by chaining outward from literals with
the unbound arguments that appear in the decomposition
state. The system notes relations that contain such an ar-
gument, records any new arguments that they introduce,
finds relations that contain them in turn, and continues
until no new arguments arise.

• Introducing unless conditions. To identify unless condi-
tions that constrain the ordering in which decompositions
occur, HPNL examines the sequence in which a subprob-
lem’s goals were achieved in the sample solution. The
system checks whether the composed conditions for a
goal G1 achieved earlier would be ‘clobbered’ by the
composed effects for a goal G2 achieved later. If so, then
it adds an unless condition to G2’s method that requires
the goal G1 is not unsatisfied.

Once HPNL has found state and unless conditions for a new
method, it is generalizes the structure by substituting con-
stant arguments with variables in a consistent manner. When
a new method C is isomorphic to an existing method M ,
then it does not add C to memory but instead increments
a counter for M . The problem solver uses this number to
select among methods when more than one is applicable.

Experiments with on-line learning in three planning do-
mains have provided evidence that HPNL acquires plan-
ning knowledge which substantially reduces both search and
problem-solving time on novel problems from the same do-



0 5 10 15 20 25 30

Number of training problems

0.
0

50
00

10
00

0
15

00
0

20
00

0

N
um

be
r 

of
 d

ec
om

po
si

tio
ns

Unless

Learn

Expert

0 5 10 15 20 25 30

Number of training problems

0.
0

50
00

10
00

0
15

00
0

20
00

0

N
um

be
r 

of
 d

ec
om

po
si

tio
ns

Unless

Learn

Expert

Figure 1: Number of decompositions needed to solve problems in Blocks World (left) and Logistics (right) by an expert HPN
knowledge base, HPN methods learned from sample plans, and learned methods that lack unless-goals conditions. Each curve
reports means and 95 percent confidence intervals over 100 random problem orders.

main. As shown in Figure 1, this improvement was rapid,
with search on Blocks World and Logistics tasks being
eliminated after tens of training problems. Moreover, CPU
time was highly correlated with the number of decomposi-
tions considered, even in a recursive domain like the Blocks
World, which suggests that the system does not suffer from
the well-known utility problem. Search was not entirely
eliminated in a third domain, Depots, but effort was still re-
duced substantially and learning was rapid.

HPNL’s approach to learning differs from earlier methods
for acquiring search-control knowledge (Langley, 1996), in-
cluding ones that rely on explanation-based learning and in-
ductive logic programming. The former relies on operator
composition to identify conditions on control rules, which
tends to produce overly specific knowledge. The latter uses
relational induction to find more general conditions, but it re-
quires multiple examples for comparison purposes. In con-
trast, HPNL invokes domain constraints to identify condi-
tions on hierarchical methods from single subplans, which
avoids both drawbacks. Other systems like ICARUS (Choi &
Langley, 2018) acquire hierarchical methods incrementally
from problem solutions, but they do not incorporate unless
conditions that ensure goals are tackled in the proper order.
In summary, HPNL learns knowledge for hierarchical plan-
ning in an effective and human-like manner.

Acknowledgements
This research was supported by Grant N00014-20-1-2643
from the US Office of Naval Research, which is not respon-
sible for its contents. Some material from this abstract has
appeared earlier in the papers by Langley (2023) and by Lan-
gley and Shrobe (2021) referenced below.

References
Choi, D., & Langley, P. (2018). Evolution of the ICARUS

cognitive architecture. Cognitive Systems Research, 48,
25–38.

Langley, P. (1996). Elements of Machine Learning. San
Francisco, CA: Morgan Kaufmann.

Langley, P. (2023). Learning hierarchical problem networks
for knowledge-based planning. Proceedings of the Thirty-
First International Conference on Inductive Logic Pro-
gramming. Windsor Great Park, UK.

Langley, P., & Shrobe, H. E. (2021). Hierarchical problem
networks for knowledge-based planning. Proceedings of
the Ninth Annual Conference on Advances in Cognitive
Systems. Cognitive Systems Foundation.

Nau, D., Au, T-C., Ilghami, O., Kuter, U., Murdock, J. W.,
Wu, D., & Yaman, F. (2003). SHOP2: An HTN plan-
ning system. Journal of Artificial Intelligence Research,
20, 379–404.


