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The Common Model of Cognition (CMC) describes a set
of cognitive architectures (CAs) that implement many cog-
nitive capabilities, including many human-like learning ca-
pabilities (Laird, Lebiere, and Rosenbloom 2017). Many of
these architectures focus on symbolic processing with con-
nections over fixed interfaces to separate perceptual mod-
ules. The symbolic learning in these architectures can be
considered Machine Learning (ML), but is very different
from Deep Learning (DL) where a large neural network is
trained from big data offline.1

There are key features that distinguish the DL approach
from the CA approach. DL typically involves 1) big data
for training, 2) massive parallelism, and 3) offline training
to produce a static structure for online use. Human-like per-
ceptual representation learning is somewhere between CA
and DL approaches. The big data input for humans is like
a streaming concatenated vector of vision, sound, and pro-
prioceptive signals processed with massive parallelism. Un-
like much current CA and DL practice, in humans perceptual
representation learning occurs online.

We refer to one agent design pattern in Soar (Laird 2012)
as an example of where CAs have fallen short of implement-
ing human-like representation learning. In the past, some
Soar agents have been developed that use a combination
of externally-developed perceptual modules (e.g. DL) and
a static interface with Soar’s control representations. For ex-
ample, we’ve used external perception to derive bounding
boxes and object properties, then used those bounding boxes
within Soar’s systems for spatial and visual reasoning (Kirk,
Mininger, and Laird 2016). This integration pattern can lead
to successful mobile robot agents capable of interacting with
real objects, but the resulting capabilities fail to be com-
pletely human-like in part because of the static opaque in-
terface between the cognition and embodiment of the agent.

Human perception transforms signals that enter through
sensory neurons into symbolic representations that symbolic
reasoning can work with. This transformation takes place in
a hierarchy. For speech, for example, audio signals are pro-
cessed temporally and spectrally to produce a hierarchy of
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1However, some work has been done on more integrated ap-
proaches such as with Sigma (Rosenbloom, Demskia, and Ustuna
2017) and Spaun (Stewart, Choo, and Eliasmith 2012).

phonemes, syllables, and words (Kuhl 2000). A similar hi-
erarchy is involved in visual processing (Kruger et al. 2012).
In humans the signal to symbol transformation is learned
incrementally from many experiences over a lifetime. Dur-
ing operation, real-time human perception and memory in-
tegrates modality-specific sensor-level representations in a
nested hierarchy with abstract situation model representa-
tions (Baldassano et al. 2017). We desire learning capable of
inferring a similar breadth of representation abstraction and
timescale, that scales to human-level sensory data streams.

“On this view, a common representational system
underlies perception and cognition, not independent
systems.” (Barsalou 1999)

“Coming to grips with these phenomena of perceptual
decisions will force a significant addition to the Soar
architecture.” (Newell 1990)

To specify what might be missing from the CMC view
that could generally constitute a more human-like learn-
ing integrated with CAs, we refer to results suggesting ad-
ditional architectural connections not included within the
CMC. Consider that Perception and Action representations
may feed directly to Long-Term Memory (Hake, Sibert, and
Stocco 2022). Inspired by that work, we speculate that a
human-like ML infers a hierarchy of symbolic representa-
tions with subsymbolic metadata spanning from “low-level”
perception to declarative causal models of environment and
action dynamics using parallel processing and without re-
quiring interaction with Working Memory. We propose this
kind of inference (e.g. like with incremental PCFG induc-
tion by Dechter (2018), but parallelized) as the target of a
CA perceptual representation learning.

We expect the benefits of such learning to be: 1) Many
embodiment models may be simple and can be learned
through inference mechanisms that fall short of the power
of extended procedural memory-driven reasoning. These
mechanisms may be more easily parallelizable while also
adequate for simple representation learning. This divorcing
of some representation induction from deliberate reasoning
reduces demands on reasoning. 2) Inferred representations
that are more directly referent to embodiment signals and in
the same representational space as cognition provides cog-
nition more control over its interface with the embodiment
than a static opaque externally-derived interface.
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