Early Extensions to Cobweb

Pat Langley

Institute for the Study of
Learning and Expertise
Palo Alto, California

Thirty-Eighth AAAI Conference on Artificial Intelligence
Vancouver, BC, February 20-27, 2024

Early Excitement about Cobweb

The late 1980s / early 1990s saw enthusiasm for Cobweb in the
machine learning community, as it:

* Acquired conceptual knowledge in an incremental, unsupervised,
and human-like manner;

* Combined ideas from decision trees, naive Bayes, and nearest
neighbor in a unified framework;

* Rested on strong theoretical foundations but also # - (Concr

FORMATION:

came with solid empirical support. KNOWLEDGE

AND

EXPERIENCE IN

UNSUPERVISED

Researchers built on Cobweb both to extend its LEARNING
abilities and apply it to Al problems.

Some early results appeared in an edited volume
(Fisher, Pazzani, & Langley, 1991).

Learning Continuous Concepts

Cobweb described cases and concepts using attributes in terms
of discrete values, which works for some domains.

This 1s sufficient in many cases, but others are more naturally
handled with continuous attributes:

» E.g., measurements taken from medical devices

» E.g., dimensions of animals and physical objects

Early decision-tree learners assumed symbolic features but were
enhanced to handle numeric ones.

Gennar1 (1990) added similar abilities to his CLASSIT system,
one of the first Cobweb extensions.

CLASSIT: Representation / Organization

Like Cobweb, CLASSIT organizes concepts in a hierarchy, with
cach node summarizing its descendants.

However, 1ts representation supports continuous attributes in
addition to discrete ones:

» Each instance specifies attributes with numeric values
» Each concept has a probabilistic description with:
* Probability of occurrence given its parent
* Continuous attributes with means and standard deviations

The latter assumes values follow Gaussian distributions that
are independent given the parent.

CLASSIT: Representation / Organization

Instance: height = 41.0
width = 36.0
texture =30.0

P(3 Co) = 5/5

attr mean o
Ht 20.0010.49
Wid 15.6010.69
Txt 20.20 7.22

P(Cy) =1/5 P(C3)=1/5 P(C3) =2/5 P(Cg)=1/5
atlr mean o atlr mean o alir mean o atlr mean o
Ht 14.00 1.00 Ht 12.00 1.00 Ht 26.50 1.50 Ht 41.00 1.00
Wid 7.00 1.00 Wid 7.00 1.00 Wid 14.00 1.00 Wid 36.00 1.00
Txt 8.00 1.00 Txt 20.00 1.00 Txt 21.50 2.50 Txt 30.00 1.00

N

Wid 13.00 1.00
Txt 19.00 1.00

P(; C4) =1/2 P(C,-,) =1/2
afir mean o atlr mean o
Ht 28.00 1.00 Ht 25.00 1.00

Wid 15.00 1.00
Txt 24.00 1.00

CLASSIT also handles discrete attributes but emphasizes continuous ones.

CLASSIT: Performance / Learning

Like Cobweb, CLASSIT sorts a new case through the hierarchy,
updating it along the way.

The key differences from its predecessor are related to the:
* Definition of category utility, which is 2 P(C) 2 1oy~ 2 1o,

K
* Where oy, is the standard deviation of attribute i for node k

* Updating scheme, which alters sums and sums of squares

* These are used to compute means and standard deviations

CLASSIT also includes an acuity parameter in order to compute
a minimum standard deviation for single-case concepts.

CLASSIT: Experimental Results

Gennari (1990) reports empirical studies of CLASSIT’s behavior on
both natural and synthetic data sets.

. 50— : L 257
s 5
)] @
g Voting database: acuity=1.0, R.C.=.8 2 .
S R Glass database: acuity=0.1, R.C.=.8 2 t attributes
S 40— ¢ H di b . s _ 8 20— t attributes
g N mmm e eart disease database: acuity=2.0 R.C.=.6 2 t attributes
° H < t attribut.
a
15—
10—
5—
R S “"““-*-—.__,_______»_z____ ______
0 T I T T T T - T T T T 1 0 T T - T -+ T T T T T T)
0 10 20 30 40 50 60 ° 10 20 30 40 50 60
Number of instances Number of instances

Learning curves were rapid on natural domains and the system was
robust to increases in noise and irrelevant attributes.

Learning Overlapping Concepts

Cobweb assumed that a single hierarchy will suffice to describe
regularities in a domain.

But we can 1dentify settings in which multiple organizations of
concepts are useful:

* E.g., animals: mammals vs. birds, herbivores vs. carnivores
* E.g., meals: meat vs. vegetables, organic vs. nonorganic

Using only one taxonomy to make predictions may not suffice
1n such situations.

In response, Martin (1992) developed TWILIX, a system that
forms overlapping concepts.

TWILIX: Representation / Organization

Like Cobweb, TWILIX organizes conceptual knowledge in a
hierarchy but it differs in that:

* Children of nodes are grouped into contrast sets

* Set members are mutually exclusive From Martin (1992)

* But not concepts in different sets

* Nodes may have multiple parents

* Memory is structured as a DAG

* Not organized as a simple tree [Collie]

TWILIX concepts have the same probabilistic representation as
found in Cobweb.

TWILIX: Performance / Learning

As before, TWILIX sorts an instance through the hierarchy,
updating probabilities and structure along the way.

The primary differences from Cobweb are that 1t can:
 Assign the case to more than one of a node’s children
* But only to one child within each contrast set
 For instances that are sufficiently novel:
* Create a new child in an existing contrast set
* Create a child in an entirely new contrast set

TWILIX combines predictions from different sets by using the
most confident one for each attribute.

10

TWILIX: Experimental Results

Martin (1992) compared TWILIX to a Cobweb variant on data for
108 Pittsburgh bridges with 12 discrete attributes.

When predicting one attribute, the new system was much better.

1
1

0.9

Twilix
Cobweb

Percentage predictive accuracy
0.8

0.6
1

0.7
1
\
\
\
\
\
\
\
I
1
]
I
I
/
/
/
\
A\
\
\
\
/
/
/
/
/
/
\

—_—————

0.5

0.4

T T T T 1
5 6 7 8 9
Number of training blocks

Percentage predictive accuracy

0.7

0.9 1

0.8

0.6

0.5

0.4

Twilix
Cobweb

T T T T T T 1
3 4 5 6 7 8 9
Number of training blocks

However, when asked to predict all the five design features, their
performance was comparable.

11

Learning Structured / Relational Concepts

Cobweb assumed an attribute-value notation for data and
knowledge, which works well for tabular content.

However, many real-world concepts are structural and
relational n character:

« E.g., objects have components in a specific configuration
» £.g., places comprise elements in a particular layout

Cobweb’s attribute-value formalism cannot encode such
categories without additional representational power.

Thompson and Langley (1991) developed another system —
Labyrinth — 1n response.

12

Labyrinth: Representation / Organization

The Labyrinth system extended Cobweb to handle relational
content by encoding;:

* Instances as composite entities with:
* Components described as attribute-value pairs
* Relations among these components
* Concepts as probabilistic summaries for:
» Component categories (probabilities over attribute values)

» Composite categories (probabilities over relations)

Labyrinth stored separate hierarchies for its composite and
component concepts.

13

Labyrinth: Representation / Organization

Instance

Ho Sy oF Mo

LEFTSTACK-2 RIGHTSTACK-1 RIGHTSTACK-2

LEFTSTACK-]

Labyrinth s composite concepts
included not only relations.

They also referred to nodes in
the component hierarchy.

Some were nonterminal nodes
describing generic categories.

. P(RightStack)=2/4 P(VIC
Hierarchy (Righiytack)=24 FVIC)
Comp, |Circle-2 0.50
0dd-4 0.50
Compy |Odd-2 0.50
Circle—4 0.50
P(Stacks)=4/16 P(VIC) Comp3< Square) 1.00
Compy |Block 1.00 Left—of Comp ; Comps | 1.00
Left—of Comp 1 Comp2 1.00
Comps | Block LOOF/" Jon Comp 5Comp, | 100
Comp3 | Block 1.00
Left—of Comp | Comp 3 (1.00 P(LeftStack \=2/4 P(VIC)
Left—of Comp; Comp , |0.50 —
Left—of Comp, Comp 5 |0.50 Comp, {Square > 1.00
On Comp , Comp 3 |0.50 Comp, |Odd~-1 0.50
On Comp , Comp { [0.50 Circle=3 0.50
Comp; (Odd—3 0.50
Composites Circle—1 0.50
P Left—of Comp, Comps | 1.00
Left—of Comp; Comps | 1.00
On Comp 2Comp1 | 1.00
P(Odd)=4/12 P(VIC)
Color [Blue 1.00
| Shape |0dd | 1.00
P(Block)=12/16 P(VIC)
Color |Red 0.33
olor Red. 0331/ [Psquare=4112 PVIC)|
Blue 0.33 Color |Gray | 1.00
Shape|Circle 0.33
Square 033 Shape [Square | 1.00 |
Odd 0.33
Circle—1
Components P(Circle)=4/12 P(VIC) -
Color [Red [1.00 Crrcle 2
‘

Shape |Circle | 1.00

14

Labyrinth: Performance / Learning

Like Cobweb, Labyrinth sorts each instance through memory,
updating the hierarchy along the way.

To handle structured and relational instances, the system:
* Classifies each component based on its description
* Uses component categories to redescribe the composite

* Classifies the composite based on components and relations

Because different component mappings are possible, Labyrinth
considers them all and selects the best.

Learning 1s similar to that in Cobweb with one key exception:
the need to generalize composite values.

15

Labyrinth: Attribute Generalization

Because composite concepts describe components as types,
Labyrinth generalizes over attribute values.

Thus, the system invokes a form of representation learning to
handle structured 1nstances.

Labyrinth uses a variation on category utility to decide when it
should take this restructuring step.

16

Labyrinth: Negative Results

When developed, Labyrinth seemed like a natural extension to
Cobweb for structured / relational domains.

However, the system produced no compelling results because:
» Attribute generalization required a good component hierarchy
* Order effects meant the component hierarchy was unreliable

* Restructuring meant the component hierarchy was unstable

Labyrinth had attempted to build 1ts composite hierarchy on
shifting sands, not a solid foundation.

Some later systems used flattened structural descriptions (e.g.,
MacLellan et al., 2016). to avoid this 1ssue.

17

Learning Movement Concepts

Cobweb acquired probabilistic concepts that described static
objects or situations.

However, people can induce concepts about dynamic behaviors,
including ones for volitional motion:

* E.g., swinging a club or throwing a ball
» E.g., executing a series of dance steps

For stereotypical activities, we seem to store generalized motor
schemas 1n long-term memory.

Iba (1991) developed the OXBOW system to represent, use, and
acquire such movement concepts.

18

OXBOW: Representation / Organization

OXBOW organizes concepts in a hierarchy using unsupervised
learning, but differs from Cobweb in that:

* Instances comprise a sequence of states, cach specifying:
* Numeric attribute values for joint positions
* Only a subset of observed states with zero derivatives

* Concepts in hierarchy also contain state sequences, each with:
* The time at which the state occurs (mean / standard deviation)

* Position and velocity for each joint (means / standard deviations)

The hierarchy 1s similar to Cobweb’s but organizes AND trees
that describe motor schemas.

19

OXBOW: Representation / Organization

Each concept specifies a
sequence of states, each with
an associated time and set
of continuous attributes.

OXBOW Concept Hierarchy

(a) (b) time 1
J1-x 50
6
Ji-y 7
n-x °
J-¥ 0
J2- 80
X time 6
J2- -20
y J1-x 0
J2-% °
- J1-y 50
J2- [}
L4 Ja-% | -10
J1-§ [
time 10 Jzx °
Ji-x | -s0 J2y | 100
J2-% -23
a1-y 3
v
Ji-x 0 J2y °
J1-y 0
1
J2-x | -50
10 J2-y -47
v
J2-x 0
Q
J2-y 0

OXBOW employs a sparse
encoding of the observed
motions that only includes
states with zero derivatives.

attr, mean 8.d.
t ime t | o0.01
t hrow Jl-x so | o.80
Jl-y o | 3.20
R .
“ Jl-x o | 0.01
d *
o \ J1-y 0 |o.01
s .
s ., J2-x 75 | 4.70
". .‘..
, . J2-y -25 1 3.90
'l h‘. ry
$ *y J2-x 0 0.01
overhand -
R J2-y o | o0.01
.o' '
0‘ :

sidearm

)
. %
)
)
.
*
o" : “n
¢ H)
v ' .
o ' AN
K4 .)
’] .
’] .
o . v,
'

fast-ball curve-ball fork-ball

20

OXBOW: Performance / Learning

OXBOW sorts a state sequence through its concept hierarchy,
altering its statistics and structure 1n the process.

When deciding which of a node’s children to select, it:

* Aligns instance and concept states using times and probabilities
* Assigning similar instance states to analogous concept states
* But some instance states may still be left unassigned
* Combines selected states into a flat attribute-value description
* Computing each option s score and selecting the best
* Category utility = é{:P(Ck)i;:P(skj) Zf) s %:ZP(Spm)Z:) —

K
This lets OXBOW incorporate sequences with different numbers

of states into the hierarchy.

21

OXBOW: Experimental Results

Iba (1991) also reported experimental evaluations of OXBOW’s
learning behavior.

120
I

One study presented the
system with instances of
four motion types: salute,
slap, semaphore, and wave.

Average Error
100
1

60 80
|

40
1

Different instances of a
given category varied in
their quantitative values. ©

20
1

I i |] | | | | | I I | 1 | 1
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Trial Number

Higher variance for attributes’ values increased prediction error,
but OXBOW still acquired the target concepts.

22

Learning Problem-Solving Concepts

Cobweb was designed to learn concepts that support simple
classification and prediction.

But humans also learn how to solve multi-step problems that
require heuristic search:

* E.g., proving theorems in logic or geometry
» E.g., finding answers to algebra or physics tasks

Again, Cobweb’s representation does not provide the structures
to store or incorporate such solutions.

Yoo and Fisher (1991) developed another system — EXOR — to
address challenges raised by problem solving.

23

EXOR: Representation / Organization

The EXOR system extended Cobweb to learn from solutions to
multi-step problems with:

* Training instances that it encoded as:
* Relational statements of problems (givens, goal)
* Solutions to these problems (AND trees)

* Conceptual knowledge that it cast as:
* Probabilistic summaries of problem features

» Abstract problem solutions (partial AND trees)

EXOR used the learned concept hierarchy to index these abstract
solutions for future use.

24

EXOR: Representation / Organization

EXOR Problem

A train leaves a station and travels east at
72 km/hr. Three hours later a second train
leaves and travels east at 120 km/hr. How

long will it take to overtake the first train?

EXOR Solution
T=D/R
a
| |
D=At*R1 R = R2 OP R1
I'J_I | I] |
At=3 R1 =72 two R1=72 R2 = 120 OP <-- subtract
vehicles

same direction

| | 1
Vi=Train1 V2=Train2 V1&V2

east(Train1) east(Train2)

==

I 1
D R = R2 OP R1

A

[| T
twoveh R1=X R2=Y OP

1

<-- sub

EXOR
Hierarchy

|

N

I I
D R = R2 QP R1
A)

I 1 i 1
twoveh R1=X R2=Y CP
sub

Same
direction

J |
| | 1
At=W R1=X Vi=U V2=V yigvz same

25

EXOR: Performance / Learning

To solve a given problem, EXOR sorts 1t through the hierarchy.
At each level, 1t selects the best-scoring child C and then 1it:

* Ensures C’s description D is consistent with problem constraints
 If not, then it examines the next best child and repeats process
 If no children are consistent, then it elaborates using domain rules

 If this fails, then it backs up in hierarchy to consider other nodes

Eventually, this produces an AND tree that solves the problem,
1deally with very little search.

Terminal nodes store ‘macro-operators’ with complete solutions,
but higher-level, abstract nodes are also useful.

26

Search Reduction in EXOR

We can view this process as replacing search in a problem space
with search through the concept memory.

. . Classification path
A well-organized hierarchy

will lead EXOR to partial

solutions that require little

effort to complete. < S{ S
Ol & A > e

P4 A N\

VAN
OO O O O A
Problem solved =%

27

EXOR: Experimental Results

Yoo and Fisher (1991) studied EXOR’s learning behavior on 48
algebra problems.

i No learning

They used 32 problems for £ 700
training and reserved the E 1
other 16 problems (one of ‘é 500 — Domain Theory search
each type) for testing. S T

300 — T s
The cost to find solutions | P e S i
decreased with experience, 100 P T s
with EXOR relying more on AR R
classification in later stages. 0 4 8 12 16 20 24 28 32

Training examples

The system also did substantially better than learning traditional
macro-operators with no hierarchy (not shown).

28

Other Descendants of Cobweb

Cobweb 1nspired a variety of other systems that extended 1ts
1deas or applied them to new settings:

CFIX (Handa, 1990) — Using context in structured domains

No name (Anderson, 1991) — ‘Rational analysis’ of categorization
ARACHNE (McKusick & Langley, 1991) — Mitigating order effects
COBBIT (Kilander & Jansson, 1993) — Handling concept drift
DAEDALUS (Allen & Langley, 1989) — Search control for planning
BRIDGER (Reich & Fenves, 1991) — Structural design

ARC (Day, 1992) — Search control for constraint satisfaction
ECOBWEB (Reich & Fenves, 1993) — Concept drift, design
TRESTLE (MacLellan et al., 2016) — Structured domains, design

There were many reasons for the extended gap, but Cobweb’s
potential was still waiting to be tapped.

29

References for Cobweb Extensions

Gennari, J. H., Langley, P., & Fisher, D. H. (1989). Models of incremental concept
formation. Artificial Intelligence, 40, 11-61.

Iba, W., & Gennari, J. H. (1991). Learning to recognize movements. In D. H. Fisher,

M. J. Pazzani, & P. Langley (Eds.), Concept formation: Knowledge and experience
in unsupervised learning. San Mateo, CA: Morgan Kaufmann.

Kilander, F., & Jansson, C. G. (1993). COBBIT — A control procedure for COBWEB in
the presence of concept drift. Proceedings of the European Conference on Machine
Learning (pp. 153—164). Vienna, Austria: Springer-Verlag.

Martin, J. (1992). Direct and indirect transfer: Explorations in concept formation. PhD
thesis, College of Computing, Georgia Institute of Technology, Atlanta, GA.

Reich, Y., & Fenves, S. J. (1991). The formation and use of abstract concepts in design.
In D. H. Fisher, M. J. Pazzani, & P. Langley (Eds.), Concept formation: Knowledge
and experience in unsupervised learning. San Mateo, CA: Morgan Kaufmann.

Thompson, K., & Langley, P. (1991). Concept formation in structured domains. In D. H.
Fisher, M. J. Pazzani, & P. Langley (Eds.), Concept formation: Knowledge and
experience in unsupervised learning. San Mateo, CA: Morgan Kaufmann.

Yoo, J., & Fisher, D. H. (1991). Concept formation over problem-solving experience. In
D. H. Fisher, M. J. Pazzani, & P. Langley (Eds.), Concept formation: Knowledge and
experience in unsupervised learning. San Mateo, CA: Morgan Kaufmann.

