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Early Excitement about Cobweb

The late 1980s / early 1990s saw enthusiasm for Cobweb in the 
machine learning community, as it:
• Acquired conceptual knowledge in an incremental, unsupervised, 

and human-like manner; 

• Combined ideas from decision trees, naive Bayes, and nearest 
neighbor in a unified framework; 

• Rested on strong theoretical foundations but also                        
came with solid empirical support.

Researchers built on Cobweb both to extend its                      
abilities and apply it to AI problems. 

Some early results appeared in an edited volume                
(Fisher, Pazzani,  & Langley, 1991). 
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Cobweb described cases and concepts using attributes in terms 
of discrete values, which works for some domains. 

This is sufficient in many cases, but others are more naturally 
handled with continuous attributes:

• E.g., measurements taken from medical devices

• E.g., dimensions of animals and physical objects

Early decision-tree learners assumed symbolic features but were 
enhanced to handle numeric ones. 

Gennari (1990) added similar abilities to his CLASSIT system, 
one of the first Cobweb extensions. 
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Learning Continuous Concepts



Like Cobweb, CLASSIT organizes concepts in a hierarchy, with 
each node summarizing its descendants.

However, its representation supports continuous attributes in 
addition to discrete ones:
• Each instance specifies attributes with numeric values

• Each concept has a probabilistic description with: 

• Probability of occurrence given its parent

• Continuous attributes with means and standard deviations

The latter assumes values follow Gaussian distributions that    
are independent given the parent. 
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CLASSIT also handles discrete attributes but emphasizes continuous ones. 
5

CLASSIT: Representation / OrganizationCONCEPT F O R M A T I O N  43 

Fifth instance: hdght = 41.0 
width = 30.0 [ P ( C o ) - -  5/.5 
texture =30.0 ai-~r m e a n  [ H~:~d 20.00 10.49 

15.00 10.69 
20.20 7.22 

P(CI) = 1/6 

Ht 14.00 1.00 
Wid 7.00 1.00 

{Tit 8.00 1.00 

[ P(C2)_-- 1/.5 P(c~) = 2/s 
a~,~ mean, o" a.~'r w'#ean o" 

Ht 12.00 1.00 Ht 26.50 1.50 
Wid 7.00 1.00 Wid 14.00 1.00 
Txt 20.00 1.00 TXt 21.50 2.60 

P(C4) -- 1/2 P__((C5)) _= 1/2 
a$$r mean ~r a~ me,',~t cr 

lit 28.00 1.00 wiRt d 25.00 1.00 
Wid 13.00 1.00 15.00 1.00 
Txt 19.00 1.00 Txt 24.00 1.00 

Fig. 9. Crcating another disjunct in thc CLASSIT hicrarchy. 

P(C6_....)) = 1/_5 

Ht 41.00 1.00 
Wid 36.00 1.00 

ITit  30.00 1.00 

Sixth instance: height = 12.0 
width = 6.0 P ( C o )  = 0 / 6  

texture = 7.0 ~ t~  m e a n  
22.00 10.57 

Wid 14.00 10.39 
Txt 18.00 6.23 

I I a~tr ~ean o" a~" i'ne.~n ~ JQilr m e a n  ~v H dl,6, xoo i H 2 5o15o ,H, 1ooioo 
6.67 1.O0 14.00 1.00 [Wid 36.00 1.00 

Txt 11.67 5.91 21,50 2.50 [Tit 30.00 1.00 

P(C4) = 1/2 P(C5) = 1/2 IT ~c~): 2/2 I P(c,) = 1/3 
a~,tr m e a n  a a ~ r  m e a n  a a t t r  m e a n  ~ a ~ r  m e a n  a 
H t  13 .00  1.00 wiHt d 12.00 1.00 Ht 28.00 1.00 Ht  26.00 1.00 
Wid 6.50 1.00 7.00 1.00 Wid 13.00 1.00 Wid 16.00 1.00 

xt 7.60 1 .00  Txt 20.00 1.00 T i t  19.00 1 .00 Txt 24.00 1.00 

Fig. 10. Merging two concepts in the CLASSIT hierarchy. 

Instance:



CONCEPT F O R M A T I O N  39 

been to extend the existing program to work in new domains and with a more 
general representation~d scheme. 

4.3. CLASSIT'S evaluation function 

CLASSIT'S use of real-valued attributes in both instances and concepts requires 
a generalization of category utility, COBWEB'S evaluation function. In particu- 
lar, the two innermost summations in category utility (equation (3)) need to be 
generalized for real-valued attributes: 

v a l u e s  v a l u e s  

~, P(A, = V, j l C k )  2 and ~ P(A i = V~j) 2 . 
J J 

Both of these terms are a sum of squares of the probabilities of all values of 
an attribute. The former uses probabilities given membership in a particular 
class, Ck, while the latter is without any class information. The second term is 
equivalent to the probability at the parent, since that node includes all 
instances for the clustering and therefore has no information about class 
membership. 

In order for these terms to be applied to a continuous domain, summation 
must be changed to integration, and some assumption must be made about the 
distribution of values. Without any prior knowledge about the distribution of 
an attribute, the best assumption is that the distribution of values for each 
attribute follows a normal curve. Thus, the probability of a particular attribute 
value is the height of the curve at that value and the summation of the square 
of all probabilities becomes the integral of the normal distribution squared. For 
the first summation, the distribution is for a particular class, while the second 
must use the distribution at the parent. In either case, the integral evaluates to 
a simple expression: 

val,es f 1 (3__~)2  1 1 P(A, = V/j) 2 ¢:> - -  exp dx = 
j o-22,n - o" 2V'-~ ' 

where /, is the mean and o" is the standard deviation. Finally, since the 
expression is used for comparison only (see the COBWEB algorithm), the 
constant term 1/2x/-~ can be discarded. 

In summary, one can replace the innermost summations from category utility 
with the term 1/m The revised evaluation function used by CLASSIT is: 

K 1 1 

Z P(Ck) Z 1/O'ik -- ~ 1 /% 
k i i 

K 
where I is the number of attributes, K is the number of classes in the partition, 
%k is the standard deviation for a given attribute in a given class, and % is the 
standard deviation for a given attribute in the parent node. TM 

la In our  implementation, the attribute summations are divided by I. This is necessary because 
CLASS1T allows instances to have some missing attributes. 

Like Cobweb, CLASSIT sorts a new case through the hierarchy, 
updating it along the way.

The key differences from its predecessor are related to the:

• Definition of category utility, which is                                 , 

• Where sik is the standard deviation of attribute i for node k

• Updating scheme, which alters sums and sums of squares

• These are used to compute means and standard deviations

CLASSIT also includes an acuity parameter in order to compute  
a minimum standard deviation for single-case concepts. 
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CLASSIT: Experimental Results

Gennari (1990) reports empirical studies of CLASSIT’s behavior on 
both natural and synthetic data sets.

Learning curves were rapid on natural domains and the system was 
robust to increases in noise and irrelevant attributes. 
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Figure 15. CLASSIT's predictive ability with irrelevant information. 
noise, the learning curve quickly approaches the ideal error. For this training set of 60 instances, 
the ideal error is 0.47. In contrast, the naive algorithm would have an average predictive error of 
20.0. As can be seen, the predictive performance of CLASSIT is largely unaffected by the number 
of irrelevant attributes. Although the asymptotic performance appears the same for all domains, it 
seems that learning is slightly slower with eight or sixteen irrelevant attributes. Presumably, this 
occurs because, with more irrelevant attributes, the system needs a little more time to 'find' the 
relevant attributes. 

Although this is a very clean, simple demonstration, I expect that the ability to ignore irrelevant 
attributes is quite important in most real applications. For this reason, most of the artificial 
domains used in this thesis include irrelevant attributes. In fact, if a domain has an extremely 
large number of attributes, many of which are not informatite, one may want to use the system to 
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Figure 9. Learning curves for CLASSIT on three real domains. 

set data. This makes it very unlikely that any result is due to a beneficial ordering that aids 
performance, or a misleading order that hinders performance. 

Second, different settings of CLASSIT's two parameters, acuity and the recognition criterion, can 
affect performance. For these experiments, I will simply list the settings used for each domain. Ob-
viously the degree to which CLASSIT must be 'tuned' to each new domain is an important concern; 
I will discuss this and explore the effects of parameter settings more completely in Chapter 5. 

Figure 9 shows learning curves for the first three domains. As the graph shows, I used a training 
set of 60 instances for the glass and heart-disease domains, and 50 for the voting database. The 
figure also includes .the parameter settings used for these experiments. I report performance as 
percentage error: at each test point, the percentage of incorrect predictions CLASSIT makes for 
the test-set instances. This is the measure I use whenever reporting predictive performance for a 
symbolic attribute. 

All three curves shown in Figure 9 demonstrate some degree oflearning. Unsurprisingly, asymp-
totic performance is best with the cleanest domain (the voting database), and worst with the 
noisiest domain (heart-disease). All three curves show most learning has occurred by the 
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Cobweb assumed that a single hierarchy will suffice to describe 
regularities in a domain.

But we can identify settings in which multiple organizations of 
concepts are useful:

• E.g., animals: mammals vs. birds, herbivores vs. carnivores

• E.g., meals: meat vs. vegetables, organic vs. nonorganic

Using only one taxonomy to make predictions may not suffice  
in such situations.

In response, Martin (1992) developed TWILIX, a system that 
forms overlapping concepts.
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Learning Overlapping Concepts



Like Cobweb, TWILIX organizes conceptual knowledge in a 
hierarchy but it differs in that:

• Children of nodes are grouped into contrast sets

• Set members are mutually exclusive

• But not concepts in different sets

• Nodes may have multiple parents

• Memory is structured as a DAG

• Not organized as a simple tree

TWILIX concepts have the same probabilistic representation as 
found in Cobweb.

9

TWILIX: Representation / Organization
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the classification of instances to concepts in a concept structure. Classification is a process 

that determines whether an instance should be considered as a member of a concept's 

extension. For example, a particular instance of animal may be classified to the dog concept 

if that instance is more like a dog than like a cat. In T W 1 L I X, whether an instance is 

classified to a concept depends upon the concept's intension and the intensions of other 

competing concepts. 

In T W I L I X , both direct and indirect transfer methods use distributions to influence 

learning. A distribution is a set of proportions for all the values of one at tr ibute for one 

concept. For the dog concept, the distribution across the values of 'hair-length' is (short-

hair 0.2);(medium-hair 0.5);(long-hair 0.3). This distribution is an approximation of the 

probability distribution for the values of hair length for all dogs. A distribution can have two 

forms. When the distribution pairs each proportion with an at tr ibute value, as above, it is 

called a specific distribution. When the distribution omits the at t r ibute values and is ordered 

from largest proportion to smallest, as for (0.5);(0.3);(0.2),it is called a abstract distribution. 

Collie iPWoTf Siamese Tiger 

Figure 1.3: A hierarchy of overlapping concepts. An instance may be classified to more 
than one concept at the second level of the hierarchy. 

From Martin (1992)



As before, TWILIX sorts an instance through the hierarchy, 
updating probabilities and structure along the way.

The primary differences from Cobweb are that it can:

• Assign the case to more than one of a node’s children
• But only to one child within each contrast set

• For instances that are sufficiently novel:
• Create a new child in an existing contrast set

• Create a child in an entirely new contrast set

TWILIX combines predictions from different sets by using the 
most confident one for each attribute. 

10
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TWILIX: Experimental Results

Martin (1992) compared TWILIX to a Cobweb variant on data for 
108 Pittsburgh bridges with 12 discrete attributes. 
When predicting one attribute, the new system was much better. 

However, when asked to predict all the five design features, their
performance was comparable. 
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Learning Structured / Relational Concepts

Cobweb assumed an attribute-value notation for data and 
knowledge, which works well for tabular content. 

However, many real-world concepts are structural and 
relational in character: 

• E.g., objects have components in a specific configuration

• E.g., places comprise elements in a particular layout

Cobweb’s attribute-value formalism cannot encode such 
categories without additional representational power. 

Thompson and Langley (1991) developed another system – 
Labyrinth – in response. 
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The Labyrinth system extended Cobweb to handle relational 
content by encoding:
• Instances as composite entities with:

• Components described as attribute-value pairs

• Relations among these components

• Concepts as probabilistic summaries for:

• Component categories (probabilities over attribute values)

• Composite categories (probabilities over relations)

Labyrinth stored separate hierarchies for its composite and 
component concepts. 
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Labyrinth’s composite concepts 
included not only relations. 

They also referred to nodes in 
the component hierarchy. 

Some were nonterminal nodes 
describing generic categories. 
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Like Cobweb, Labyrinth sorts each instance through memory, 
updating the hierarchy along the way. 

To handle structured and relational instances, the system:

• Classifies each component based on its description

• Uses component categories to redescribe the composite

• Classifies the composite based on components and relations

Because different component mappings are possible, Labyrinth 
considers them all and selects the best. 

Learning is similar to that in Cobweb with one key exception:  
the need to generalize composite values. 
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Because composite concepts describe components as types, 
Labyrinth generalizes over attribute values. 

Thus, the system invokes a form of representation learning to 
handle structured instances. 

Labyrinth uses a variation on category utility to decide when it 
should take this restructuring step.
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Labyrinth: Negative Results

When developed, Labyrinth seemed like a natural extension to 
Cobweb for structured / relational domains.

However, the system produced no compelling results because:

• Attribute generalization required a good component hierarchy

• Order effects meant the component hierarchy was unreliable

• Restructuring meant the component hierarchy was unstable

Labyrinth had attempted to build its composite hierarchy on 
shifting sands, not a solid foundation.

Some later systems used flattened structural descriptions (e.g., 
MacLellan et al., 2016). to avoid this issue.  



Cobweb acquired probabilistic concepts that described static 
objects or situations.

However, people can induce concepts about dynamic behaviors, 
including ones for volitional motion:

• E.g., swinging a club or throwing a ball

• E.g., executing a series of dance steps

For stereotypical activities, we seem to store generalized motor 
schemas in long-term memory. 

Iba (1991) developed the OXBOW system to represent, use, and 
acquire such movement concepts. 
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OXBOW organizes concepts in a hierarchy using unsupervised 
learning, but differs from Cobweb in that:
• Instances comprise a sequence of states, each specifying:

• Numeric attribute values for joint positions

• Only a subset of observed states with zero derivatives

• Concepts in hierarchy also contain state sequences, each with: 

• The time at which the state occurs (mean / standard deviation)

• Position and velocity for each joint (means / standard deviations)

The hierarchy is similar to Cobweb’s but organizes AND trees 
that describe motor schemas. 
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OXBOW employs a sparse 
encoding of the observed 
motions that only includes 
states with zero derivatives. 
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Figure 1. Pictorial representation of (a) a movement and (b) a motor schema. 

specify joint information. The positions and velocities of the joints as 
given in the 3-tuples can be represented in either viewer-centered or 
joint-centered coordinates. Because these two formats are based upon 
differing coordinate systems, they give rise to two types of schémas that 
lend themselves to different performance tasks. In this chapter we will 
only consider viewer-centered schémas, but we return briefly to joint-
centered schémas in the closing discussion. 

A viewer-centered schema represents the position and velocity vectors 
using Cartesian two-space coordinates with the origin centered at the 
agent. For the purposes of this chapter, the center of an agent will 
always be located at the base of its arm. Therefore, in a viewer-centered 
schema, the first 3-tuple (describing joint J0) would specify the x and y 
coordinates at the end of the first axm segment (actually the location of 
joint J\) relative to the origin located at the base (or joint Jo). Similarly, 
the information stored at each joint J{ reflects the position and velocity 
of joint Ji+i relative to the base at joint J0. 

The viewer-centered representation gets its name from the source of 
this information — the agent's visual sensors. These can be thought 
of as generalized world sensors: anything that lets the agent observe 
objects and their positions relative to the agent's current location. In 
the case of a more complete agent, one can imagine other origins for a 

(a) (b) 
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Figure 2. An IS-A hierarchy of schémas for "throw" movements, along with a 
portion of their internal structure. 

motor schema resulting from a single observed movement in that more 
instances will readily match an abstract concept than a specific one. 

Recall that our motor schémas consist of a sequence of state descrip-
tions. These descriptions can be thought of as components of the entire 
schema. It is important to note that this sequential representation im-
plies a partial structure to these concepts. Each state description is 
"part of" the entire motor schema, although the states themselves are 
not represented structurally and a strict ordering (with respect to time) 
exists on the states. This structure is based upon temporal relations 
as opposed to the more traditional spatial relations in the context of 
PART-OF hierarchies. This significantly complicates the concept forma-
tion task as it is commonly conceived.4 As a further complication, there 
may be a variable number of states in a given motor schema. In Sec-
tion 5 we discuss our response to these issues, but for now one need only 
to understand the structural nature of our representation. 

The way OXBOW stores and organizes these state descriptions in-
troduces an additional hierarchy of state descriptions. Earlier we said a 
node in the schema hierarchy represented a movement concept that gen-
eralized some set of observed movements. Now let us add that within 
4. For one conceptualization of the concept formation problem in the context of 

structured representations, see Gennari et al. (1989). Thompson and Langley 
(this volume) present another approach to solving this extended problem. 

OXBOW Concept Hierarchy

Each concept specifies a 
sequence of states, each with 
an associated time and set  
of continuous attributes. 
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originally designed for nominally valued attributes, and summations of 
probabilities of attribute values. As used by COBWEB, these probabili-
ties were computed simply by keeping counts of attribute values.8 

OXBOW works with continuous attributes, and the original expres-
sion for category utility had to be modified for such domains (Gennari 
et al., 1989). For such attributes, probabilities are computed by assum-
ing a normal distribution of values and finding the standard deviation 
over observed instances. More precisely, category utility for continuous 
attributes is 

~�  — · M 
where P(Ck) is the probability of class C*., K is the number of classes 
at the current level of the hierarchy, σ^ is the standard deviation for an 
attribute i in class Cfc, and σ;ρ is the standard deviation for attribute i 
in the parent node.9 

However, this expression assumes that every class consists of a simple 
list of attributes. For OXBOW, we must extend this to consider classes 
with a set of components, or in this case, state descriptions. Because 
the number of states is not the same for all movement instances, the 
information in each component is weighted by the probability of that 
component. For OXBOW, category utility is 

K J I M I 

where P(Skj) is the probabiHty of the jth state description in class C&, 
or the proportion of all the state descriptions from schema instances of 
node Ck that are classified at state description Skj- The probabiHty 
P{Spm) is similarly defined for the rnth state description in the parent 
of the current partition. 

8. See Fisher and Pazzani (Chapter 1, this volume) or Thompson and Langley (this 
volume) for more details and discussion of COBWEB's category utility equation. 

9. As discussed in Gennari et al. (1989), the value of l / �  is undefined for any 
concept based on a single instance. We adopt the same solution using an acuity 
parameter, but are not greatly concerned with its value. See Gennari (1990) for 
empirical analysis of the impact of this parameter on system performance. 

(2) 

OXBOW sorts a state sequence through its concept hierarchy, 
altering its statistics and structure in the process. 

When deciding which of a node’s children to select, it:
• Aligns instance and concept states using times and probabilities
• Assigning similar instance states to analogous concept states
• But some instance states may still be left unassigned

• Combines selected states into a flat attribute-value description
• Computing each option’s score and selecting the best
• Category utility =     .

This lets OXBOW incorporate sequences with different numbers 
of states into the hierarchy.
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Figure 5. Learning curves showing error as a function of the amount of missing 
test movement that must be predicted. 

fixed the variation level at 2.0 and averaged the results over ten runs of 
30 training instances each. 

The figure shows that when O X B O W is predicting 80% of the move-
ment (observing only the first 20% of the movement), the errors are 
consistently the highest (except very early in training, when not all the 
movement types have yet been seen). However, there is little difference 
between observing 50% of the movement and observing 80%. This result 
suggests that the system is not adversely affected by having less infor-
mation available for classification except in extreme cases like the 80% 
condition. Our model of motor learning makes an additional prediction 
for this type of performance task. As the variability in the training 
data increases, O X B O W should need to observe larger portions of the 
test movement in order to prevent the predictive error from increasing. 
This is an intuitively appealing prediction that lends to the appeal of 
our model. 

In conclusion, this experiment holds other factors constant while vary-
ing the amount of information in the test movement, thus indicating the 
sensitivity of the classification process during retrieval. The results sug-
gest that O X B O W is able to correctly classify movements when given 
only partial structures as input. Again, this suggests that performance 
problems are due to the mechanism for storing state descriptions rather 
than to the classification or retrieval process. 
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Iba (1991) also reported experimental evaluations of OXBOW’s 
learning behavior.

Higher variance for attributes’ values increased prediction error,  
but OXBOW still acquired the target concepts.

One study presented the 
system with instances of 
four motion types: salute, 
slap, semaphore, and wave. 
 
Different instances of a 
given category varied in  
their quantitative values. 



Cobweb was designed to learn concepts that support simple  
classification and prediction.

But humans also learn how to solve multi-step problems that 
require heuristic search:

• E.g., proving theorems in logic or geometry

• E.g., finding answers to algebra or physics tasks

Again, Cobweb’s representation does not provide the structures 
to store or incorporate such solutions. 

Yoo and Fisher (1991) developed another system – EXOR – to 
address challenges raised by problem solving.
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Learning Problem-Solving Concepts



The EXOR system extended Cobweb to learn from solutions to 
multi-step problems with:

• Training instances that it encoded as:

• Relational statements of problems (givens, goal)

• Solutions to these problems (AND trees) 

• Conceptual knowledge that it cast as: 

• Probabilistic summaries of problem features

• Abstract problem solutions (partial AND trees)

EXOR used the learned concept hierarchy to index these abstract 
solutions for future use.
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EXOR: Representation / Organization
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EXOR: Representation / Organization

EXOR Problem

EXOR 
Hierarchy

232 Douglas Fisher and Juugsoon Park Yo0 

successful if the problem-solver observes that the distances traveled by 
the two trains to point of overtake are equal, Dl = D2 .  This additional 
constraint is necessary to solve the problem. If the problem-solver fails to 
encode this knowledge from the problem statement or lacks background 
knowledge to exploit it, then this line of reasoning will fail. 

An alternative solution to the Overtake problem is abbreviated in Fig. 
2a. The solution is expressed in a formal notation required by the com- 
puter, but intuitively it encodes that the time until overtake (T = D /R )  is 
obtained from the distance that must be made up by the faster train, where 
Dl is the distance traveled by the first train before the second train starts, 
and the relative rate of travel of the second train (R = R2 - R l  ). Again, if 
appropriate knowledge is lacking or incorrect, then this line of reasoning 
will fail as well. 

The search for a correct solution to a problem will succeed if the neces- 

a 

D d t ' R 1  R e R 2 O P R l  

A t  A +  = 3 R1 72 tWO R1-72 R2 E 120 OP C - -  subtract 

t 
same direction 

t V l = T r a i n l  & V2-Tra i n2 V l L V 2  

east(Tra i n1) east(Tra i n2) 

T = DIR + b 
D d t ' R 1  R = R2 OP R1 

t - - - -  - - - - -  
R1 = X  t!w R l=X R2= " f I O P  <$ subtract I 

veh ic les I 4 
A t  = W 

I 

I I ; same direction ; 
V l  =u v 2 - v  V l C V 2 

; ea i t ( U ) ea s t ( v ) I 
I - - - - - - - - - - 

Fig. 2. A specific solution and generalized schema for OVERTAKE. 
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C. EXOR: IMPROVING PROBLEM-SOLVING BY 

Yo0 and Fisher (1991b) defined a system called EXOR (Explanation ORga- 
nizer), which forms an abstraction hierarchy over a stream of problems 
and their solutions. For instance, in the domain of algebra story problems 
an abstraction hierarchy over 48 problems drawn from 12 problem types 
enumerated by Mayer (1981) is formed like the one shown in Fig. 4. 
Associated with each node is a generalized schema like those described 
previously. The schema at each node is shared by all the schemas stored 
below it; put another way, each schema extends its parent schema in a 
unique way. 

CONCEPT LEARNING 

1. 

The advantage of this abstraction hierarchy is that it constrains problem- 
solving search. Figure 5 illustrates how this process operates on a specific 
example. In step (l), a problem statement is presented along with a quan- 
tity that must be computed. The problem statement is compared against 
the schemas at the first level of the abstraction hierarchy. In this case, we 
want to solve for ‘time’, so a first-level node that solves this quantity is 
selected (as opposed to ‘distance’ or ‘rate’). The general ‘schema’ that 
‘time’ can be solved by dividing ‘distance’ by ‘rate’ is asserted as relevant 
to the current problem, and this becomes the current hypothesis. In step 

An Example of Problem-solving by Categorization 

Fig. 4. An abstraction hierarchy over problem schemas. Adapted from Yo0 and Fisher 
(1991a, 1991 b). 

EXOR Solution

A train leaves a station and travels east at 
72 km/hr. Three hours later a second train 
leaves and travels east at 120 km/hr. How 
long will it take to overtake the first train? 



To solve a given problem, EXOR sorts it through the hierarchy. 

At each level, it selects the best-scoring child C and then it:
• Ensures C’s description D is consistent with problem constraints

• If not, then it examines the next best child and repeats process

• If no children are consistent, then it elaborates using domain rules

• If this fails, then it backs up in hierarchy to consider other nodes

Eventually, this produces an AND tree that solves the problem, 
ideally with very little search.

Terminal nodes store ‘macro-operators’ with complete solutions, 
but higher-level, abstract nodes are also useful. 
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EXOR: Performance / Learning



We can view this process as replacing search in a problem space 
with search through the concept memory. 
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Search Reduction in EXOR
288 J. Yoo AND D. FISHER 

Classification path 

Figure 5. Paths taken during problem-solving classification. 

In contrast, if a part of a node's partial explanation contradicts a 
known condition of the problem (e.g., traveling e a s t instead of west) , 
then the node is abandoned from further consideration and search con-
trol looks to a sibling of the node. That is, control returns to the node's 
parent and another child is explored. If all of a node's children result in 
contradictions, then an attempt is made to complete the partial expla-
nation accumulated thus far with the domain theory. If this fails, then 
the node is abandoned as above, the partial solution associated with 
that node is retracted from the new problem's solution, and backtrack-
ing returns control to the node's parent. Figure 5 shows a high-level 
trace of the classification process, including backtracking, that occurs 
when solving a new problem. 'House'-shaped 'nodes' represent searches 
of the domain theory that occur after all of a node's children are exam-
ined unsuccessfully, but before the node is abandoned. 

To understand this process more deeply, consider that explanation-
based classification requires an A N D / O R search of a domain theory. For 
example, a domain theory rule which states that d i s t a n c e = r a t e x 
t ime requires the system to solve for r a t e and t ime. In turn, there 
may be several ways to solve each of these quantities; this choice con-
stitutes the O R part of the search. E X O R still conducts an A N D / O R 

search, but transforms it. Collections of ANDed rules are stored as gen-
eralized explanations within nodes of the abstraction hierarchy, while 
O R conditions are implicit in the choice between nodes (siblings) that 

A well-organized hierarchy  
will lead EXOR to partial 
solutions that require little 
effort to complete. 
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Training examples 

Figure 6. The search efficiency of Ex OR as a function of training in the algebra 
domain. 

area reflects search in tree nodes; the upper (decreasing) curve gives 
the tota l amount of search required to solve all 16 test problems. The 
amount of domain theory search to complete part ial solutions is the 
difference between the upper and lower curves. Thus , E X O R reduces 
the overall effort required to solve problems, as shown by the decreasing 
curve; the required effort is increasingly borne by the E X O R classifica-
tion tree, while the domain theory plays a correspondingly smaller par t 
as training proceeds. 

We have not graphed the efficiency of EBG, but we did test it in 
the same domain. After 32 training problems, EBG required 1352.6 
predicate instantiations to solve 16 test problems. This is considerably 
more than either E X O R or the domain theory alone. E X O R ' S relative 
success stems from its ability to exploit shared part ial solutions. For 
example, the system can exploit the generalized solution from an 'op-
posite direction' and 'overtake' problem to partially solve a Closure' 
problem, something tha t EBG cannot do. This limitation of EBG is 
magnified when there are many explanations tha t differ in very minor 
ways. For example, suppose tha t an opposite-direction problem de-
scribes a car traveling e a s t and one traveling wes t , and domain theory 
inference rules tell us tha t e a s t and west are o p p o s i t e - d i r e c t i o n s , 
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EXOR: Experimental Results

Yoo and Fisher (1991) studied EXOR’s learning behavior on 48 
algebra problems.

The system also did substantially better than learning traditional  
macro-operators with no hierarchy (not shown).

They used 32 problems for 
training and reserved the 
other 16 problems (one of 
each type) for testing. 

The cost to find solutions 
decreased with experience, 
with EXOR relying more on 
classification in later stages. 

C
om

pu
ta

tio
na

l c
os

t



Other Descendants of Cobweb

Cobweb inspired a variety of other systems that extended its 
ideas or applied them to new settings: 
• CFIX (Handa, 1990) – Using context in structured domains 
• No name (Anderson, 1991) – ‘Rational analysis’ of categorization
• ARACHNE (McKusick & Langley, 1991) – Mitigating order effects
• COBBIT (Kilander & Jansson, 1993) – Handling concept drift
• DAEDALUS (Allen & Langley, 1989) – Search control for planning
• BRIDGER (Reich & Fenves, 1991) – Structural design
• ARC (Day, 1992) – Search control for constraint satisfaction
• ECOBWEB (Reich & Fenves, 1993) – Concept drift, design
• TRESTLE (MacLellan et al., 2016) – Structured domains, design

There were many reasons for the extended gap, but Cobweb’s 
potential was still waiting to be tapped. 
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