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Exciting and Disruptive Times!
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Source: https://ai.googleblog.com/2022/04/pathways-
language-model-palm-scaling-to.html
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Some Human-like Performance
…but not Human-Like Learning
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Substantial Data and 

Compute Requirements

 
Difficult to Adapt and 

Update with New Data

• Require internet scale data 

• Cost millions of dollars to train 
(>$10M for large models)


• Large power / carbon 
footprints for both training and 
inference (training > hundreds 
of households annual power)

• Primarily support offline batch 
training (rather than 
incremental, continual learning) 

• Exhibit catastrophic forgetting 
of old knowledge when trained 
on new data

Metrics from Stanford AI Index Report 2023

If you are interested in Human-Like Learning, then consider checking out the 
upcoming AAAI Spring Symposium on the topic at https://humanlikelearning.com 

https://humanlikelearning.com


Examples of Opportunties for Human-Like Learning
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Missing Knowledge Incorrect Knowledge



Future Directions for Cobweb Research
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Performance Efficiency / Adaptability

• Explore new learning and 
performance mechanisms


• Translate ideas about input 
processing from deep learning 
to Cobweb (convolutions, 
attention, etc.)


• Increase scale of training data

• Improve asymptotic runtime of 
core approach


• Investigate ability to support 
continual, incremental learning 
without forgetting


• Explore data and power 
efficiency relative to deep 
learning techniques



Changes to Core Cobweb 
Mechanisms
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Information Theory Variant of Category Utility
Expected information gained, rather than expected correct guesses

• Probability Theoretic Category Utility





• Information Theoretic Category Utility — i.e., Mutual Information (MI)


, 


where 


• Information Theoretic Partition Utility:


CU(Ck) = P(Ck)∑
i

∑
j

[P(Ai = vij |Ck)2 − P(Ai = vij)2]

MI(Ck) = P(Ck)∑
i

[H(Ai = V ) − H(Ai = V |Ck)]

H(Ai = V ) = − ∑
j

P(Ai = vij) × ln(P(Ai = vij))

PU(C1, ⋯, Cm) =
m

∑
k=1

MI(Ck)
m
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The correct guesses of an attribute-value probability is the first order 
approximation of the entropy, so CU is an approximation of MI.

H(Ai = V ) = − ∑
j

(pij × ln(pij)) = − ∑
j

pij × ln(1 − (1 − pij))

= − ∑
j

pij [−(1 − pij) −
1
2

(1 − pij)2 −
1
3

(1 − pij)3 + ⋯]
= ∑

j

pij [(1 − pij) +
1
2

(1 − pij)2 +
1
3

(1 − pij)3 + ⋯]
∑

j

pij × (1 − pij) = ∑
j

pij − ∑
j

p2
ij = 1 − ∑

j

p2
ij

(by series 
expansion)

(i.e., Entropy)
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j

pij − ∑
j

p2
ij = 1 − ∑

j

p2
ij

(by series 
expansion)

Another advantage of using information theory is 
that most distributions (e.g., categorical and normal) 

have closed-form definitions for Entropy.



Attribute Smoothing
Ensures well defined behavior when estimating from a single example

Nominal Attribute Smoothing 

,


where ,  is a 
smoothing parameter (a small positive 
value), and  is the number of possible 
values of attribute .

H(Ai = Vi j) = − ∑
j

pij × ln(pij)

pij =
nij + α

ni + α × d
α

d
Ai
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Continuous Attribute Smoothing 

 ,


where  is the sample standard deviation 
and  is a smoothing parameter (a 
small positive value).


H(Ai = V) =
1
2

ln [2π (σ2
i + σ2

acuity)] +
1
2

σi
σacuity



Original Categorization Approach
Greedy search and prediction from a single node
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Original Categorization Approach
Greedy search and prediction from a single node
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Output prediction about instance 
using terminal node probability table



New Categorization Approach
Best first search and weighted prediction from all expanded nodes
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New Categorization Approach
Best first search and weighted prediction from all expanded nodes
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The node  on the search frontier 
with the highest collocation score 

 expanded on 
each iteration.

c

s(c) = P(x |c)P(c |x)
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New Categorization Approach
Best first search and weighted prediction from all expanded nodes
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The node  on the search frontier 
with the highest collocation score 

 expanded on 
each iteration.

c

s(c) = P(x |c)P(c |x)

Cobweb’s final prediction is the combination of predictions 
from all expanded nodes, weighted by their collocation.



Cobweb/4V: Incremental learning 
over image data

24

Nicki Barari

nb895@drexel.edu

Xin Lian

xlian34@gatech.edu

mailto:nb895@drexel.edu
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Tensor Representation

• Cobweb/4V uses a tensor 
representation, where 
each image is a tensor of 
pixel channel intensities.


• Building on Cobweb/3, it 
stores statistics in each 
node to efficiently 
compute and update 
means and variances 
online without needing to 
iterate over prior data.
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Evaluation of Cobweb Changes on MNIST
More nodes expanded yields better performance

• We trained on the all the MNIST 
training data (60k images) and 
evaluated on the official test set 
(10k images).


• We varied the maximum number 
of nodes expanded during 
prediction from 50 - 500 in 
increments of 50.


• We found that in general, the 
more nodes expanded the better, 
but that performance levels off 
around 300 nodes expanded.
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An Evaluation of Catastrophic Forgetting
Cobweb/4V Does Not Catastrophically Forget

• We compared Cobweb/4V to the FC 
and FC-CNN on an class-
incremental prediction


• It sees all of a target digit up front (0 
in example), then every successive 
split of training data lacks the digit


• We evaluate on all test items for the 
target digit


• We also compared with variants of 
FC and FC-CNN that use a replay 
buffer


• Our results show that all NN 
approaches forget catastrophically, 
but Cobweb/4V does not
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An Evaluation of Learning & Performance

We compared Cobweb/4V to two 
neural network baselines on an 
incremental MNIST training task.


We presented each approach 10 
images at a time and then 
evaluated it on entire test set.


Cobweb has fast, stable learning, 
performing much better in cases 
with fewer examples.


We also compared Cobweb to the 
NN baselines after training on entire 
MNIST training set (see table) and 
found it is comparable to FC.
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FC is a standard fully-connected neural 
network (with 1 hidden layer) and FC-
CNN is extended with 2 convolutional 

and max pool layers.

Final Accuracy 
(after all 60k training)

Cobweb/4V 95.14%
FC 95.13%

FC-CNN 97.35%

Cobweb exhibits fast, stable learning



Convolutional Cobweb
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MacLellan., C.J. & Thakur, H. (2021). Convolutional Cobweb: A Model of Incremental Learning from 2D 
Images. In Proceedings of the Ninth Annual Conference on Advances in Cognitive Systems. (pdf) (talk)

https://chrismaclellan.com/media/publications/MacLellan-ACS-21.pdf
https://youtu.be/YJPrrfdRxQ8


Pixel Input
Convolutional OutputConvolutional Filter
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Convolutional Processing in a Simple CNN



Pixel Input
Convolutional OutputConvolutional Filter

31

Convolutional Processing in a Simple CNN
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Convolutional Processing in a Simple CNN
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Convolutional Processing in a Simple CNN



Pixel Input
Convolutional OutputConvolutional Filter
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Convolutional Processing in a Simple CNN



Pixel Input
Convolutional OutputConvolutional Filter
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Convolutional Processing in a Simple CNN



Convolutional Output
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Convolutional Processing in a Simple CNN



Convolutional Output
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Convolutional Processing in a Simple CNN



Convolutional Output
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Classification Layers

Convolutional Processing in a Simple CNN



Convolutional Output
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Classification Layers

Predict Label “3” for Image

Convolutional Processing in a Simple CNN



Convolutional Cobweb Approach

Convolutional Filter Hierarchy

Pixel Input
Intermediate Representation
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Convolutional Cobweb Approach

Filter9Convolutional Filter Hierarchy

Pixel Input
Intermediate Representation
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Convolutional Cobweb Approach

Filter9 Filter1Convolutional Filter Hierarchy

Pixel Input
Intermediate Representation
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75Convolutional Filter Hierarchy

Pixel Input
Intermediate Representation
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15

Convolutional Filter Hierarchy

Pixel Input
Intermediate Representation
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15 Filter9

Convolutional Filter Hierarchy

Pixel Input
Intermediate Representation
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15 Filter9 Filter11

Convolutional Filter Hierarchy

Pixel Input
Intermediate Representation
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15 Filter9 Filter11

Filter1

Convolutional Filter Hierarchy

Pixel Input
Intermediate Representation
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15 Filter9 Filter11
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Pixel Input
Intermediate Representation
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15 Filter9 Filter11
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15 Filter9 Filter11

Filter1 Filter75 Filter9

Intermediate Representation
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15 Filter9 Filter11

Filter1 Filter75 Filter9

Intermediate Representation

Classification Hierarchy
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Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15 Filter9 Filter11

Filter1 Filter75 Filter9

Intermediate Representation

Classification Hierarchy Attribute Value Probability
0,0 Filter9 88%

Filter22 12%
0,1 Filter1 95%

Filter7 5%
… … …

Label “3” 100%

Final Concept: Concept15

59



Convolutional Cobweb Approach

Filter9 Filter1 Filter75

Filter15 Filter9 Filter11

Filter1 Filter75 Filter9

Intermediate Representation

Classification Hierarchy Attribute Value Probability
0,0 Filter9 88%

Filter22 12%
0,1 Filter1 95%

Filter7 5%
… … …

Label “3” 100%

Produces a Prediction of “3” for Image

60

Final Concept: Concept15



Evaluation

• As a preliminary test of our approach, we compared it to the two kinds of 
models we tried to unify:


• A simple 1-layer CNN (no concept formation)


• A Cobweb model that maps pixels to features (no convolutional filters)
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Overall Performance

• Each model was applied to the incremental 
MNIST prediction task


• Each model was presented with 300 images 
(30 images for each digit)


• Images were presented in a random order 
(same order across models)


• Our results average over 50 runs


• We find that our approach outperforms both 
approaches it was a based on
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Note, CNN-Simple uses a replay buffer, given that we’re training and 
testing incrementally.

Average performance of each model, whiskers denote 
bootstrapped 95% confidence intervals



Learning Curves

• We also investigated the 
performance of the models 
over the course training


• We find that both Cobweb 
models seem to converge 
much more quickly than the 
CNN (likely because they’re 
not using SGD)


• During training, our 
approach is only slightly 
better than Cobweb, but the 
performance is consistent 
over runs and across training
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Exploring Improvements to Convolutional Processing

Ongoing Research by Nicki 
Barari nb895@drexel.edu

Representations generated with 
K-Means (single cluster label 
per 8x8 patch) yield increased 
predictive performance over 

using pixels directly

Currently exploring 
representations generated by 
Cobweb (multiple hierarchical 

labels per 8x8 patch) 
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mailto:nb895@drexel.edu
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Cobweb Language 
Modeling Research 
Program

Replicate Core Capabilities of Word2Vec, Glove, etc. and

 Rebase Other Approaches on Cobweb

Image from: Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., ... & Hu, X. (2023). Harnessing the power of llms in practice: A survey on chatgpt and beyond. https://arxiv.org/abs/2304.13712

https://arxiv.org/abs/2304.13712


The Basis of Modern Language Models

• The influential Word2Vec system 
demonstrated that one can extract 
meaningful semantic information in the 
form of word embeddings by analyzing 
words and their surroundings context 
(Mikolov et al., 2013a,b)


• This early work has grown over the past 
decade into the today’s large language 
models (e.g., BERT and GPT)
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Figures from: https://daleonai.com/embeddings-explained 

https://daleonai.com/embeddings-explained


Contextual Extensions to Cobweb

• Word2Vec introduced two 
approaches for analyzing words 
and their surrounding context:


• Contextual Bag of Words (CBOW)


• Skip-Gram


• We developed an extensions to 
Cobweb based on Word2Vec:


• The Word System

67

Figure from Mikolov et al. (2013): https://arxiv.org/abs/1301.3781  

(predicts word given context) (predicts context given word)

https://arxiv.org/abs/1301.3781
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Attribute Value P(A=V)
Anchor inspector 1/1
Context the 3/8

house 1/8
with 1/8
and 1/8

saw 1/8

crime 1/8

Example Text as Word Instance

I went to the house with the inspector 
and saw the crime scene.

Example Text
The Cobweb Word System

MacLellan, C.J., Matsakis, P., & Langley, P. (2022). Efficient Induction of Language Models via Probabilistic Concept 
Formation. In Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems. (pdf) (talk)

https://chrismaclellan.com/media/publications/maclellan-acs-22.pdf
https://www.youtube.com/watch?v=ACTJaLlup-I


The Cobweb Word System
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Attribute Value P(A=V)
Anchor inspector 1/1
Context the 3/8

house 1/8
with 1/8
and 1/8

saw 1/8

crime 1/8

Example Text as Word Instance

I went to the house with the inspector 
and saw the crime scene.

Example Text Attribute Value P(A=V)
Anchor inspector 1/2

police 1/2
Context the 5/16

house 1/16

with 2/16

and 1/16
saw 1/16

crime 1/16

well 1/16

enough 1/16

theory 1/16

if 1/16
colonel 1/16

Word Concept Containing Instance

MacLellan, C.J., Matsakis, P., & Langley, P. (2022). Efficient Induction of Language Models via Probabilistic Concept 
Formation. In Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems. (pdf) (talk)

https://chrismaclellan.com/media/publications/maclellan-acs-22.pdf
https://www.youtube.com/watch?v=ACTJaLlup-I


Experimental Evaluation

• We are still in the process of developing our model and scaling it up to larger data sets, but 
we have some preliminary results comparing our approach to Word2Vec on 500 project 
Gutenberg books, which are part of the Microsoft Sentence Completion Challenge data. 


• To evaluate each approach, we utilized an incremental prediction paradigm where we:


• Iterate over the corpus


• Mask each word


• Predict its value give the context words (10 words before and after the masked word)


• Evaluate the prediction


• Update the model by training it with the true anchor word and its context
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Zweig, G., & Burges, C. J. (2011). The Microsoft research sentence completion challenge. Microsoft Research Technical Report MSR-TR-2011-129.



Experimental Evaluation
Cobweb Outperforms Word2Vec’s CBOW Approach

• Our Cobweb model expands 100 
nodes to make a prediction


• We use the CBOW variant of Word2Vec 
(the variant that can predict anchor 
given context)


• Our results suggest that Cobweb 
improves at predicting the anchor word 
much more quickly than Word2Vec


• Additionally, it achieves better 
predictive performance overall 
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An Analysis of Training Cost
Cobweb Scales Better than Word2Vec

• Cobweb can efficiently update both 
its structure and its parameters


• It’s asymptotic complexity is better 
than Word2Vec, roughly O(nlogn) 
vs O(n^2)


• Cobweb can efficiently update its 
parameters without retraining on 
prior data


• As demonstrated earlier, it is 
robust to catastrophic forgetting
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MacLellan, C.J., Matsakis, P., & Langley, P. (2022). Efficient Induction of Language Models via Probabilistic 
Concept Formation. In Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems.

N is number of words in corpus 
E is number of epochs 
W is the size of the window 
D is the dimensionality of the embedding 
V is the size of the vocabulary 

B is the branching factor of the cobweb tree  
C is the number of concepts in the tree

O(N × B × logB(N) × W )Cobweb with recent 
improvements:
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MacLellan, C.J., Matsakis, P., & Langley, P. (2022). Efficient Induction of Language Models via Probabilistic 
Concept Formation. In Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems.

N is number of words in corpus 
E is number of epochs 
W is the size of the window 
D is the dimensionality of the embedding 
V is the size of the vocabulary 

B is the branching factor of the cobweb tree  
C is the number of concepts in the tree

O(N × B × logB(N) × W )With recent algorithmic 
improvements:

Practically, we just finished training the 
largest Cobweb model ever built with over 

over 14 million instances (~500 books)!



Next Steps
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Learning Intermediate Representations

MacLellan, C.J., Matsakis, P., & Langley, P. (2022). Efficient Induction of Language Models via Probabilistic Concept 
Formation. In Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems. (pdf) (talk)

I went to the house with the inspector 
and saw the crime scene.

concept400, 
concept8, 
concept1concept12, 

…, 
concept1

concept19, 
…, 

concept1

concept11, 
…, 

concept1

concept4, 
…, 

concept1
concept22, 

…, 
concept1 concept12, 

…, 
concept1

concept72, 
…, 

concept1

The Leaf Model 
(uses a single concept to represent each word)

The Path Model 
(uses multiple concepts to represent each word)

https://chrismaclellan.com/media/publications/maclellan-acs-22.pdf
https://www.youtube.com/watch?v=ACTJaLlup-I


General Discussion

• We have been developing foundational Cobweb building blocks, so that we can 
demonstrate efficient, scalable, and high-performance capabilities.


• Cobweb is well-suited for incremental learning across a wide range of tasks 
and domains.


• We believe it has the potential to be competitive with deep learning, while 
retaining many of its benefits (e.g., data efficiency and robustness to forgetting) 
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Thank you!

New and Future Extensions to Cobweb 

Christopher J. MacLellan

https://chrismaclellan.com 

cmaclell@gatech.edu 

76 https://tail.cc.gatech.edu

https://chrismaclellan.com
mailto:cmaclell@gatech.edu

