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Exciting and Disruptive Times!
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Abstract

Artificial intelligence (AI) researchers have been developing and refining large language models (LLMs)
that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding
of learning and cognition. The latest model developed by OpenAl, GPT-4 [Ope23|, was trained using an
unprecedented scale of compute and data. In this paper, we report on our investigation of an early version
of GPT-4, when it was still in active development by OpenAl. We contend that (this early version of) GPT-
4 is part of a new cohort of LLMs (along with ChatGPT and Google’s PaLM for example) that exhibit
more general intelligence than previous AI models. We discuss the rising capabilities and implications of
these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and difficult
tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any
special prompting. Moreover, in all of these tasks, GPT-4’s performance is strikingly close to human-level
performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of
GPT-4’s capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version
of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis
on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more
comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond
next-word prediction. We conclude with reflections on societal influences of the recent technological leap and
future research directions.

Source: https://ai.googleblog.com/2022/04/pathways-
language-model-palm-scaling-to.html
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Some Human-like Performance

...but not Human-Like Learning

Substantial Data and Difficult to Adapt and
Compute Requirements Update with New Data
training (rather than
» Cost millions of dollars to train incremental, continual learning)

(>$10M for large models) - | |
» Exhibit catastrophic forgetting

» Large power / carbon of old knowledge when trained

footprints for both training and on new data
inference (training > hundreds
of households annual power)

Metrics from Stanford Al Index Report 2023

If you are interested in Human-Like Learning, then consider checking out the
upcoming AAAI Spring Symposium on the topic at https://humanlikelearning.com
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Examples of Opportunties for Human-Like Learning

Missing Knowledge

Model: GPT-4

Can you give me advice about how to play the game Space Transit, created by a research
group at UCSD?

I'm sorry, but as my knowledge is limited to updates until September 2021,Jl am not

familiar with the game "Space Transit" created by a research group at UCSD. If this game
was developed after September 2021, | won't be able to provide specific advice about it.
However, if you have any questions about general gaming strategies, game design, or any

other related topics, I'd be more than happy to help.

Incorrect Knowledge

Model: GPT-4

Please give me a bio about Christopher J. MacLellan, who is an assistant professor at
Georgia Tech's School of Interactive Computing.

Christopher J. MacLellan is an accomplished Assistant Professor in the School of
Interactive Computing at the Georgia Institute of Technology (Georgia Tech). With a
strong background in artificial intelligence, machine learning, and human-computer
interaction, his research focuses on developing intelligent systems that can augment

human learning and creativity by leveraging collaboration between humans and Al.

Dr. MacLellan earned his Bachelor's degree il Computer Science from the University of

California, Santa Cruz Jbefore pursuing his Master's and Ph.D. in Human-Computer

Interaction from Carnegie Mellon University. During his time at Carnegie Mellon,
Christopher contributed significantly to the field of Al and learning sciences, receiving

numerous accolades for his innovative research.

As an assistant professor at Georgia Tech, Dr. MacLellan is dedicated to advancing the
field of interactive computing and exploring novel ways to empower individuals through
the use of Al. His interdisciplinary approach has led to notable collaborations, including
the development of intelligent tutoring systems, tools for enhancing the creative process,

and techniques for improving the usability of Al systems.



Future Directions for Cobweb Research




Changes to Core Cobweb
Mechanisms



Information Theory Variant of Category Utility

Expected information gained, rather than expected correct guesses

* Probability Theoretic Category Utility
CU(Ck) — P(Ck) Z Z [P(Al — szl Ck)2 — P(Al — Vl-j)z] oo
i ] 0.15 ~
* Information Theoretic Category Utility — i.e., Mutual Information (MI)
MI(C) = P(C) ) [HA; = V) — HA; = V|G,

l- 0.0 0.2 0.4 0.6 0.8 1.0
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| 1 ]
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e Information Theoretic Partition Utility: ] 1
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= j j j j

The correct guesses of an attribute-value probability is the first order
approximation of the entropy, so CU is an approximation of Ml.



Information Theory Variant of Category Utility

Expected information gained, rather than expected correct guesses

Another advantage of using information theory is
that most distributions (e.g., categorical and normal)
have closed-form definitions for Entropy.



Attribute Smoothing

Ensures well defined behavior when estimating from a single example

Nominal Attribute Smoothing

HA; = Vij)=— ) p;XIn(p),
J

ny; + o

smoothing parameter (a small positive

value), and d is the number of possible
values of attribute A..

S alIs a

where p;; =

Continuous Attribute Smoothing

| , , |
HA, =V) = Eln lZﬂ (ai + aacuity)] + 5 ,

where ¢; is the sample standard deviation
and o IS a smoothing parameter (a

aAcuity
small positive value).



Original Categorization Approach

Greedy search and prediction from a single node
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Original Categorization Approach

Greedy search and prediction from a single node

(2
)




Original Categorization Approach

Greedy search and prediction from a single node




Original Categorization Approach

Greedy search and prediction from a single node

Output prediction about instance
using terminal node probability table




New Categorization Approach

Best first search and weighted prediction from all expanded nodes



New Categorization Approach

Best first search and weighted prediction from all expanded nodes

The node ¢ on the search frontier
with the highest collocation score

._> s(c) = P(x|c)P(c|x) expanded on
each iteration.
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New Categorization Approach

Best first search and weighted prediction from all expanded nodes

The node ¢ on the search frontier
with the highest collocation score

s(c) = P(x|c)P(c|x) expanded on

/ each iteration.

B—
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New Categorization Approach
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/ \ each iteration.
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New Categorization Approach

Best first search and weighted prediction from all expanded nodes

The node ¢ on the search frontier
with the highest collocation score

s(c) = P(x|c)P(c|x) expanded on

/ \ each iteration.

n /) e
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New Categorization Approach

Best first search and weighted prediction from all expanded nodes

R/ N
/
oo

The node ¢ on the search frontier
with the highest collocation score

s(c) = P(x|c)P(c|x) expanded on
each iteration.
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New Categorization Approach

Best first search and weighted prediction from all expanded nodes

The node ¢ on the search frontier
with the highest collocation score

s(c) = P(x|c)P(c|x) expanded on
each iteration.

R/ AN
b m

Cobweb’s final prediction is the combination of predictions
from all expanded nodes, weighted by their collocation.
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Cobweb/4V: Incremental learning
over Image data

Nicki Barari Xin Lian
nb895@drexel.edu xlian34@gatech.edu
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Tensor Representation

Classification Hierarchy

Concept0

e Cobweb/4V uses a tensor s e
representation, where - > e s
each image iIs a tensor of }
pixel channel intensities. Conceptt \ \_Goncept __

e Building on Cobweb/3, it
stores statistics in each
node to efficiently
compute and update
means and variances
online without needing to
iterate over prior data.
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Evaluation of Cobweb Changes on MNIST

More nodes expanded yields better performance

 We trained on the all the MNIST
training data (60k images) and
evaluated on the official test set
(10k images).

e We varied the maximum number
of nodes expanded during
prediction from 50 - 500 in
iIncrements of 50.

 We found that in general, the
more nodes expanded the better,
but that performance levels off
around 300 nodes expanded.

O
©
o

Test accuracy

0.94

0.94

26

129

0.94776

100

0.94979

# of maximum best nodes in prediction

0.95067

200

0.95

114

0.99137

300

0.95

152

0.9516

400

0.95

166

0.98171

500



An Evaluation of Catastrophic Forgetting
Cobweb/4V Does Not Catastrophically Forget

 We compared Cobweb/4V to the FC
and FC-CNN on an class-
incremental prediction

* |t sees all of a target digit up front (O
iIn example), then every successive
split of training data lacks the digit

* \We evaluate on all test items for the
target digit

 We also compared with variants of
FC and FC-CNN that use a replay
buffer

 Qur results show that all NN
approaches forget catastrophically,
but Cobweb/4V does not

1.0
0.9
>, 0.8
c 0.7
>3 0.6
O 0.5
0.4
3 0.3
= 0.2
0.1
0.0

Approach == cobweb4v == fc == fc-cnn == fc-cnn-replay

- —
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=

Incomlng Tralnlng Spllt
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Digit Label Distribution (when the chosen digit label is 0)
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Cobweb exhibits fast, stable learning

We compared Cobweb/4V to two
neural network baselines on an
incremental MNIST training task.

We presented each approach 10
images at a time and then
evaluated it on entire test set.

Cobweb has fast, stable learning,
performing much better in cases
with fewer examples.

We also compared Cobweb to the
NN baselines after training on entire
MNIST training set (see table) and
found it is comparable to FC.

An Evaluation of Learning & Performance

Approach = cobwebdv = fc = fc-cnn

250

-------- HIH’“" |ﬂW' IT‘

500

# of Training Samples

FC is a standard fully-connected neural
network (with 1 hidden layer) and FC-
CNN is extended with 2 convolutional

and max pool layers.
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750 1000

Final Accuracy
(after all 60k training)

Cobweb/4V

95.14%

97.35%




Convolutional Cobweb

MacLellan., C.J. & Thakur, H. (2021). Convolutional Cobweb: A Model of Incremental Learning from 2D
Images. In Proceedings of the Ninth Annual Conference on Advances in Cognitive Systems. (pdf) (talk)
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Convolutional Processing in a Simple CNN

Pixel Input

Convolutional Filter Convolutional Output
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Convolutional Processing in a Simple CNN

Pixel Input

Convolutional Filter Convolutional Output




Convolutional Processing in a Simple CNN

Convolutional Output




Convolutional Processing in a Simple CNN

Convolutional Output




Convolutional Processing in a Simple CNN

Classification Layers

Convolutional Output

/

\




Convolutional Processing in a Simple CNN

Classification Layers

Convolutional Output

/

> Predict Label “3” for Image

\




Convolutional Cobweb Approach

Pixel Input

Intermediate Representation

Convolutional Filter Hierarchy

FilterO

Attribute Mea

ﬁ Pixel 0,0 0.64/0.11 #
Pixel 0,1 0.22/0.05
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Convolutional Cobweb Approach

Pixel Input

Convolutional Filter Hierarchy

FilterO

Attribute | Mean/Std

S

Pixel 0,0 0.64/0.11

Pixel 0,1 0.22/0.05

Filter7 / \ Filter2

Intermediate Representation

- Attribute | Mean/Std Attribute Mean/Std
Pixel 0,0 0.82/0.09 Pixel 0,0 0.23/0.10
Pixel 0,1 0.05/0.03 Pixel 0,1 0.85/0.04

P .
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Convolutional Cobweb Approach

Pixel Input

Filter9

S

Convolutional Filter Hierarchy

FilterO
Attribute | Mean/Std
Pixel 0,0 0.64/0.11
Pixel 0,1 0.22/0.05

Filter7

- B

Attribute Mean/Std
Pixel 0,0 0.00/0.01
Pixel 0,1 0.44/0.01

Attribute | Mean/Std

Pixel 0,0 0.82/0.09

Pixel 0,1 0.05/0.03

\LFiIteHS

W

\ Filter2

Intermediate Representation

Filter9

Attribute Mean/Std
Pixel 0,0 0.23/0.10
Pixel 0,1 0.85/0.04

Attribute Mean/Std
Pixel 0,0 0.04/0.8
Pixel 0,1 0.10/0.02
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Convolutional Cobweb Approach

Pixel Input

Filter9

S

Filter7 /

- B

Attribute Mean/Std
Pixel 0,0 0.00/0.01
Pixel 0,1 0.44/0.01

Convolutional Filter Hierarchy

FilterO

Attribute | Mean/Std

Pixel 0,0 0.64/0.11

Pixel 0,1 0.22/0.05

\ Filter2

Intermediate Representation

Filter9

Filter

Attribute | Mean/Std Attribute Mean/Std
Pixel 0,0 0.82/0.09 Pixel 0,0 0.23/0.10
Pixel 0,1 0.05/0.03 Pixel 0,1 0.85/0.04

22

jlter?S_

§

{ Attribute Mean/Std

Pixel 0,0 0.04/0.8
Pixel 0,1 0.10/0.02
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Convolutional Cobweb Approach

Pixel Input

Filter9

S

Convolutional Filter Hierarchy

Filter7 /

FilterO

Attribute | Mean/Std
Pixel 0,0 0.82/0.09
Pixel 0,1 0.05/0.03

Attribute | Mean/Std
Pixel 0,0 0.64/0.11
Pixel 0,1 0.22/0.05

\ Filter2

Intermediate Representation

Filter9

Filter

Filter/75

Attribute Mean/Std
Pixel 0,0 0.23/0.10
Pixel 0,1 0.85/0.04

.
- B

Attribute Mean/Std
Pixel 0,0 0.00/0.01
Pixel 0,1 0.44/0.01

FiIter7L

Pixel 0,0

\\ -

0.04/0.8

Pixel 0,1

0.10/0.02
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Convolutional Cobweb Approach

Pixel Input

Filter9

FilterO

Attribute | Mean/Std
Pixel 0,0 0.82/0.09
Pixel 0,1 0.05/0.03

Attribute Mean/Std
Pixel 0,0 0.00/0.01
Pixel 0,1 0.44/0.01

, FiIter75_

1

Attribute Mean/Std
Pixel 0,0 0.64/0.11
Pixel 0,1 0.22/0.05

\ Filter2

Convolutional Filter Hierarchy

Intermediate Representation

Filter9

Filter

Filter/75

Filter15 | Filte

Attribute Mean/Std
Pixel 0,0 0.23/0.10
Pixel 0,1 0.85/0.04

22

Attribute Mean/Std
Pixel 0,0 0.04/0.8
Pixel 0,1 0.10/0.02
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Convolutional Cobweb Approach

Pixel Input

Convolutional Filter Hierarchy

=

.

Filtero /

Attribute Mean/Std
Pixel 0,0 0.00/0.01
Pixel 0,1 0.44/0.01

FilterO

Attribute | Mean/Std
Pixel 0,0 0.82/0.09
Pixel 0,1 0.05/0.03

>
1

\ \ Filter75

Attribute Mean/Std
Pixel 0,0 0.64/0.11
Pixel 0,1 0.22/0.05

Filter7 / \ Filter2

Intermediate Representation

Filter9

Filter

Filter/75

Filter15

Filter9

Attribute Mean/Std
Pixel 0,0 0.23/0.10
Pixel 0,1 0.85/0.04

22

Attribute Mean/Std
Pixel 0,0 0.04/0.8
Pixel 0,1 0.10/0.02
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Convolutional Cobweb Approach

Pixel Input

S

Filter7 /

Filtero /

Convolutional Filter Hierarchy

FilterO
Attribute | Mean/Std
Pixel 0,0 0.64/0.11
Pixel 0,1 0.22/0.05

e
- B

\ Filter2

Attribute | Mean/Std Attribute Mean/Std
Pixel 0,0 0.82/0.09 Pixel 0,0 0.23/0.10
Pixel 0,1 0.05/0.03 Pixel 0,1 0.85/0.04

Attribute Mean/Std
Pixel 0,0 0.00/0.01
Pixel 0,1 0.44/0.01

W

Pixel 0,0
Pixel 0,1

Attribute

Mean/Std

\\ -

0.04/0.8

0.10/0.02
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Intermediate Representation

Filter9

Filter

Filter/75

Filter15

Filter9

Filter11




Convolutional Cobweb Approach

Pixel Input

Filtero /

FilterO
Attribute | Mean/Std
Pixel 0,0 0.64/0.11
Pixel 0,1 0.22/0.05

\ Filter2

Convolutional Filter Hierarchy

Intermediate Representation

Filter9

Filter

Filter/75

Filter15

Filter9

Filter1

Filter11

Attribute Mean/Std
Pixel 0,0 0.00/0.01
Pixel 0,1 0.44/0.01

Attribute | Mean/Std Attribute | Mean/Std
Pixel 0,0 0.82/0.09 Pixel 0,0 0.23/0.10
Pixel 0,1 0.05/0.03 Pixel 0,1 0.85/0.04
‘22
Filter75

Attribute | Mean/Std

Pixel 0,0 0.04/0.8

Pixel 0,1 0.10/0.02

1
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Convolutional Cobweb Approach

Pixel Input

S

Convolutional Filter Hierarchy

Filter7 /

Filtero /

FilterO

Attribute | Mean/Std
Pixel 0,0 0.82/0.09
Pixel 0,1 0.05/0.03

Attribute | Mean/Std
Pixel 0,0 0.64/0.11
Pixel 0,1 0.22/0.05

\ Filter2

Intermediate Representation

Filter9

Filter

Filter/75

Filter15

Filter9

Filter11

Filter1

Filter75 |

Attribute Mean/Std
Pixel 0,0 0.23/0.10
Pixel 0,1 0.85/0.04

.
- B

Attribute Mean/Std
Pixel 0,0 0.00/0.01
Pixel 0,1 0.44/0.01

FiIter7L

Pixel 0,0

0.04/0.8

\\ -

Pixel 0,1

0.10/0.02
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Convolutional Cobweb Approach

Pixel Input

I

Filter7 /

N

Filtero / \ Filter75

FilterO

Attribute Mean/Std
Pixel 0,0 0.82/0.09
Pixel 0,1 0.05/0.03

Attribute

Mean/Std

Pixel 0,0

0.00/0.01

Pixel 0,1

0.44/0.01

‘ Attribute Mean/Std
Pixel 0,0 0.64/0.11
Pixel 0,1 0.22/0.05

\ Filter2

Fvv

Convolutional Filter Hierarchy

—_—

Intermediate Representation

Filter9

Filter

Filter/75

Filter15

Filter9

Filter11

Filter1

Filter75

Filter9

Attribute Mean/Std
Pixel 0,0 0.23/0.10
Pixel 0,1 0.85/0.04

Attribute Mean/Std
Pixel 0,0 0.04/0.8
Pixel 0,1 0.10/0.02
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Convolutional Cobweb Approach
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Intermediate Representation

Filter9 | Filter1 | Filter75
Filter15 | Filter9 | Filter11
Filter1 | Filter75 | Filter9




Convolutional Cobweb Approach

Intermediate Representation

Filter9 | Filter1 | Filter75

Filter15 | Filter9 | Filter11

Filter1 | Filter75 | Filter9

57



Convolutional Cobweb Approach

Intermediate Representation

Classification Hierarchy
Concept0

Filter9 | Filter1 | Filter75

Atute” | probability
Filter15 | Filterd | Filter! | —

Conceptb6

X \ oncept11

Filter1 | Filter75 | Filter9 e T P
Value Probability Value Probability
6,6: Filter7 12/75 6,6: Filter7 20/180
6,7:Filter2 60/75 6,7:Filter2 0/180
-
label:3 9/75 label:3 0/180

22

Concept9 /

\ \ Concept22

Attribute- - Attribute- -
Value Probability Value Probability

6,6: Filter7 5/5 6,6: Filter7 3/4

6,7:Filter2 0/5 6,7:Filter2 4/4
label:3 5/5 label:3 4/4
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Convolutional Cobweb Approach

Intermediate Representation

Filter9 | Filter1 | Filter75
Filter15 | Filter9 | Filter11
Filter1 | Filter75 | Filter9

Concept9 /

Classification Hierarchy
Concept0

S

Conceptb6

/

Attribute- .-
Value Probability

6,6: Filter7 12/75

6,7:Filter2 60/75
label:3 9/75

Attribute- -
Value Probability

6,6: Filter7 5/5

6,7:Filter2 0/5
label:3 5/5

\ Concept22

Attribute-
Value

Probability

6,6: Filter7

90/300

6,7:Filter2

120/300

label:3

30/300

Attribute-

Value Probability
6,6: Filter7 3/4
6,7:Filter2 4/4

label:3 4/4
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X \ oncept11

22

—_—

Final Concept: Concept15

Attribute-

Value Probability
6,6: Filter7 20/180
6,7:Filter2 0/180

label:3 0/180

Attribute @ Value Probability
0,0 Filter9 88%
Filter22 12%
0, Filter 95%
Filter7 5%
Label “3” 100%




Convolutional Cobweb Approach

Intermediate Representation

Filter9 | Filter1 | Filter75
Filter15 | Filter9 | Filter11
Filter1 | Filter75 | Filter9

Concept9 /

Classification Hierarchy
Concept0

S

Conceptb6

7

Attribute- .-
Value Probability

6,6: Filter7 12/75

6,7:Filter2 60/75
label:3 9/75

Attribute- -
Value Probability

6,6: Filter7 5/5

6,7:Filter2 0/5
label:3 5/5

\ Concept22

Attribute-
Value

Probability

6,6: Filter7

90/300

6,7:Filter2

120/300

label:3

30/300

Attribute-

Value Probability
6,6: Filter7 3/4
6,7:Filter2 4/4

label:3 4/4

60

X \ oncept11

22

—_—

Final Concept: Concept15

Attribute-
Value

Probability

6,6: Filter7

20/180

6,7:Filter2

0/180

label:3

0/180

Attribute @ Value Probability
0,0 Filter9 88%
Filter22 12%
0,1 Filter 95%
Filter7 5%
Label “3” 100%

Produces a Prediction of “3” for Image




Evaluation

* As a preliminary test of our approach, we compared it to the two kinds of
models we tried to unify:

* A simple 1-layer CNN (no concept formation)

A Cobweb model that maps pixels to features (no convolutional filters)
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Overall Performance

 Each model was applied to the incremental
MNIST prediction task

 Each model was presented with 300 images
(30 images for each digit)

* |Images were presented in a random order
(same order across models)

« Our results average over 50 runs

* We find that our approach outperforms both
approaches it was a based on

Note, CNN-Simple uses a replay buffer, given that we’re training and
testing incrementally.
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Average Error

0.40-

0.36-

CNN-'SimpIe Cobweb, Convolutional Cobweb

Average performance of each model, whiskers denote
bootstrapped 95% confidence intervals



Learning Curves

 We also investigated the

performance of the models “_/'ng'N_Simple
over the course training 0.8 Cobweb/3

Convolutional Cobweb

* We find that both Cobweb
models seem to converge
much more quickly than the
CNN (likely because they’re
not using SGD)

e During training, our
approach is only slightly
better than Cobweb, but the
performance is consistent
over runs and across training

0.4

0.2- | | |
0 100 200 300
# Training Opportunities
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Representations generated with
K-Means (single cluster label
per 8x8 patch) yield increased
predictive performance over
using pixels directly

Currently exploring
representations generated by
Cobweb (multiple hierarchical

labels per 8x8 patch)

K-means
sans with 20 clusters

Test image: 2'13 @
28 -

1 wege « 300 pelctwn

Cobweb
vegorized Trained on MNIST patches

s CAWVe
TobE®

Test image:

28 -~

1 image = 400 pordchass

B
2

Exploring Improvements to Convolutional Processing
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Image from: Yang, J., Jin, H., Tang, R., Han, X,, Feng, Q., Jiang, H., ... & Hu, X. (2023). Harnessing the power of lims in practice: A survey on chatgpt and beyond. https://arxiv.org/abs/2304.13712
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* The influential Word2Vec system
demonstrated that one can extract
meaningful semantic information in the
form of word embeddings by analyzing
words and their surroundings context
(Mikolov et al., 2013a,b)

* This early work has grown over the past

decade into the today’s large language
models (e.g., BERT and GPT)
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The Basis of Modern Language Models
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Contextual Extensions to Cobweb

* Word2Vec introduced two
approaches for analyzing words
and their surrounding context:

» Contextual Bag of Words (CBOW)
e Skip-Gram

* \We developed an extensions to
Cobweb based on Word2Vec:

 The Word System

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2) N 4 w(t-2)

w(t-1) / / w(t-1)
\SU M .
/
w(t)

/ :
w(t+2) 4 w(t+2)
CBOW Skip-gram
(predicts word given context) (predicts context given word)

Figure from Mikolov et al. (2013): https://arxiv.org/abs/1301.3781
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The Cobweb Word System

Example Text

| went to the house with the inspector
and saw the crime scene.

Example Text as Word Instance

_ Attribute | Value | PA<V)
1/1
the 3/8
| house | 18

| with | 1B
| and 1/8
| saw 1/8
| crime | 18

MacLellan, C.J., Matsakis, P., & Langley, P. (2022). Efficient Induction of Language Models via Probabilistic Concept
Formation. In Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems. (pdf) (talk)
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The CObweb WOrd SyStem Word Concept Containing Instance

Example Text __Attribute | Value | P(A=V)
| went to the house with the inspector
and saw the crime scene. _

Example Text as Word Instance | house | 1716
_Atribute | vawe | PAsv) | L | with | 216
7 [ e [ w6
the 3/8 | saw | 116
| howe | 1 | crme | 116

| weh | 116
| enough | 1716
| theory | 1716
I A RV
| colonel | 1716

MacLellan, C.J., Matsakis, P., & Langley, P. (2022). Efficient Induction of Language Models via Probabilistic Concept
Formation. In Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems. (pdf) (talk)
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| with | 1B
| and 1/8
| saw 1/8
| crime | 18
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Experimental Evaluation

* We are still in the process of developing our model and scaling it up to larger data sets, but
we have some preliminary results comparing our approach to Word2Vec on 500 project
Gutenberg books, which are part of the Microsoft Sentence Completion Challenge data.

* Jo evaluate each approach, we utilized an incremental prediction paradigm where we:
* |terate over the corpus
 Mask each word
* Predict its value give the context words (10 words before and after the masked word)
* Evaluate the prediction

* Update the model by training it with the true anchor word and its context

Zweig, G., & Burges, C. J. (2011). The Microsoft research sentence completion challenge. Microsoft Research Technical Report MSR-TR-2011-129.
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Experimental Evaluation

Cobweb Outperforms Word2Vec’s CBOW Approach

100000-Instance Moving Average of P(word|context)

e Our Cobweb model expands 100
nodes to make a prediction

 We use the CBOW variant of Word2Vec
(the variant that can predict anchor
given context)

* Our results suggest that Cobweb
improves at predicting the anchor word
much more quickly than Word2Vec

* Additionally, it achieves better
predictive performance overall
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An Analysis of Training Cost
Cobweb Scales Better than Word2Vec

MacLellan, C.J., Matsakis, P., & Langley, P. (2022). Efficient Induction of Language Models via Probabilistic
Concept Formation. In Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems.

. Approach Asymptotic Run Time
‘ _CObW@b can eﬁlqlently update both Word2Vec-CBOW | O(N2 x E x (W x D + D x loga(V)))
Its structure and its parameters Cobweb-Word O(N x B2 x logg(N) x V)
Co_bweb with recent ON X B X1 N)X W
 |t’s asymptotic complexity is better ""‘;:r"_e"‘e"t‘“ o of d( | e
than Word2Vec, roughly O(nlogn) 'S NUMBET 0T WOrds In corpus

vs O(n"2)

 Cobweb can efficiently update its
parameters without retraining on

E Is number of epochs

W is the size of the window

D is the dimensionality of the embedding
V is the size of the vocabulary

prior data B is the branching factor of the cobweb tree
C Is the number of concepts in the tree

 As demonstrated earlier, 1t Is
robust to catastrophic forgetting
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An Analysis of Training Cost

Cobweb Scales Better than Word2Vec

 Cobweb can efficiently update both
Its structure and its parameters

* |t’'s asymptotic complexity is better
than Word2Vec, roughly O(nlogn)
vs O(n"2)

 Cobweb can efficiently update its
parameters without retraining on
prior data

 As demonstrated earlier, 1t Is
robust to catastrophic forgetting

/3

Cobweb vs. Word2Vec Asymptotic Training Cost
10000 -

—— n? — Word2Vec
8000 - nlog(n) — Cobweb

6000 -
4000 A

2000 -

0-.

0 20 40 60 80 100

Practically, we just finished training the
largest Cobweb model ever built with over
over 14 million instances (~500 books)!



Next Steps

Learning Intermediate Representations

The Leaf Model The Path Model
(uses a single concept to represent each word) (uses multiple concepts to represent each word)
concepti1 concept400,
concept400 P concepts,
concept 1 2 concept12, concepti  concept19, concept11,
Concept19 concept1 \ \ concept / Concept1
‘ . | went to the house W|th the inspector
| went to the house Wlth the Inspector and saw the crime scene.
and saw the crime scene. /‘ t "\
A ? \ concept4, concept72,
t22 ceey ceey
concept4 conc ept72 concie-},a " concept1 concept1
concept concept12,
concept22  conceptl2
concept

MacLellan, C.J., Matsakis, P., & Langley, P. (2022). Efficient Induction of Language Models via Probabilistic Concept
Formation. In Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems. (pdf) (talk)
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General Discussion

* We have been developing foundational Cobweb building blocks, so that we can
demonstrate efficient, scalable, and high-performance capabilities.

 Cobweb is well-suited for incremental learning across a wide range of tasks
and domains.

 We believe it has the potential to be competitive with deep learning, while
retaining many of its benefits (e.g., data efficiency and robustness to forgetting)
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Thank you!

New and Future Extensions to Cobweb

Christopher J. MacLellan
https://chrismaclellan.com
cmaclell@gatech.edu

Georgia ;'l School of

TAIL
Tech |/ Interactive Computing =
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